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CHAPTER 1
The Nature of Scientific Knowledge

Theory → Hypothesis → Experiment

In 1915, Albert Einstein produced his general theory of relativity. In 1917, Einstein 
announced an amazing new hypothesis: according to the theory, light traveling 
through space bends as it passes near a star. In 1919, this hypothesis was confirmed by 
teams under the leadership of Sir Arthur Eddington, using photographs taken of stars 
positioned near the sun in the sky during a solar eclipse.

The image above appeared in the Illustrated London News.
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OBJECTIVES
After studying this chapter and completing the exercises, students will be able to do 
each of the following tasks, using supporting terms and principles as necessary:

1.	 Define science, theory, hypothesis, and scientific fact.
2.	 Explain the difference between truth and scientific facts and describe how we 

obtain knowledge of each.
3.	 Describe the difference between General Revelation and Special Revelation and 

relate these to our definition of truth.
4.	 Describe the “Cycle of Scientific Enterprise,” including the relationships between 

facts, theories, hypotheses, and experiments.
5.	 Explain what a theory is and describe the two main characteristics of a theory.
6.	 Explain what is meant by the statement, “a theory is a model.”
7.	 Explain the role and importance of theories in scientific research.
8.	 State and describe the steps of the “scientific method.”
9.	 Define explanatory, response, and lurking variables in the context of an 

experiment.
10.	 Explain why experiments are designed to test only one explanatory variable at 

a time. Use the procedures the class followed in the Pendulum Experiment as a 
case in point.

11.	 Explain the purpose of the control group in an experiment.
12.	 Describe the possible implications of a negative experimental result. In other 

words, if the hypothesis is not confirmed, explain what this might imply about 
the experiment, the hypothesis, or the theory itself.

1.1	 Modeling Knowledge

1.1.1 Kinds of Knowledge
There are many different kinds of knowledge. One kind of knowledge is truth. As 

Christians, we are very concerned about truth because of its close relation to knowledge 
revealed to us by God. Scientific facts and theories constitute a different kind of knowledge, 
and as students of the natural sciences we are also concerned about these.

Some people handle the distinction between the truths of the faith and scientific 
knowledge by referring to religious teachings as one kind of truth and scientific teaching 
as a different kind of truth. The problem here is that there are not different kinds of truth. 
There is only one truth, but there are different kinds of knowledge. Truth is one kind of 
knowledge, and scientific knowledge is a different kind of knowledge.

We are going to unpack this further over the next few pages, but here is a taste of where 
we are going. Scientific knowledge is not static. It is always changing as new discoveries are 
made. On the other hand, the core teachings of Christianity do not change. They are always 
true. We know this because God reveals them to us in his Word, which is true. This differ-
ence between scientific knowledge and knowledge from Scripture indicates to us that the 
knowledge we have from the Scriptures is a different kind of knowledge than what we learn 
from scientific investigations. 

I have developed a model of knowledge that emphasizes the differences between what 
God reveals to us and what scientific investigations teach us. This model is not perfect (no 
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model is), nor is it exhaustive, but it is very useful, as all good models are. Our main goal in 
the next few sections is to develop this model of knowledge. The material in this chapter is 
crucial if you wish to have a proper understanding of what science is all about.

To understand science correctly, we need to understand what we mean by scientific 
knowledge. Unfortunately, there is much confusion among non-scientists about the nature 
of scientific knowledge and this confusion often leads to misunderstandings when we talk 
about scientific findings and scientific claims. This is nothing new. Misconceptions about 
scientific claims have plagued public discourse for thousands of years and continue to do so 
to this day. This confusion is a severe problem, one much written about within the scientific 
community in recent years.

To clear the air on this issue, it is necessary to examine what we mean by the term truth, 
as well as the different ways we discover truth. Then we must discuss the specific character-
istics of scientific knowledge, including the key scientific terms fact, theory, and hypothesis.

1.1.2 What Is Truth and How Do We Know It?
Epistemology, one of the major branches of philosophy, is the study of what we can 

know and how we know it. Both philosophers and theologians claim to have important 
insights on the issue of knowing truth, and because of the roles science and religion have 
played in our culture over the centuries, we need to look at what both philosophers and 
theologians have to say. The issue we need to treat briefly here is captured in this question: 
What is truth and how do we know it? In other words, what do we mean when we say 
something is true? And if we can agree on a definition for truth, how can we know whether 
something is true?

These are really complex questions, and philosophers and theologians have been work-
ing on them for thousands of years. But a few simple principles will be adequate for our 
purpose.

As for what truth is, my simple but practical definition is this:

Truth is the way things really are.

 Whatever reality is like, that is the truth. If there really is life on other planets, then it is 
true to say, “There is life on other planets.” If you live in Poughkeepsie, then when you say, 
“I live in Poughkeepsie” you are speaking the truth.

The harder question is: How do we know the truth? According to most philosophers, 
there are two ways that we can know truth, and these involve either our senses or our use of 
reason. First, truths that are obvious to us just by looking around are said to be evident. It 
is evident that birds can fly. No proof is needed. So the proposition, “Birds can fly,” conveys 
truth. Similarly, it is evident that humans can read books and that birds cannot. Of course, 
when we speak of people knowing truth this way we are referring to people whose percep-
tive faculties are functioning normally.

The second way philosophers say we can know truth is through the valid use of logic. 
Logical conclusions are typically derived from a sequence of logical statements called a syl-
logism, in which two or more statements (called premises) lead to a conclusion. For exam-
ple, if we begin with the premises, “All men are mortal,” and, “Socrates was a man,” then it 
is a valid conclusion to state, “Socrates was mortal.” The truth of the conclusion of a logical 
syllogism definitely depends on the truth of the premises. The truth of the conclusion also 
depends on the syllogism having a valid structure. Some logical structures are not logically 
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valid. (These invalid structures are called logical fallacies.) If the premises are true and the 
structure is valid, then the conclusion must be true.

So the philosophers provide us with two ways of knowing truth that most people agree 
upon—truths can be evident (according to our senses) or they can be proven (by valid use 
of reason from true premises).

Believers in some faith traditions—including Christianity—argue for a crucial third 
possibility for knowing truth, which is by revelation from supernatural agents such as God 
or angels. Jesus said, “I am the way, and the truth, and the life” (John 14:6). As Christians, 
we believe that Jesus was “God with us” and that all he said and did were revelations of truth 
to us from God the Father. Further, we believe that the Bible is inspired by God and reveals 
truth to us. We return to the ways God reveals truth to us at the end of this section.

Obviously, not everyone accepts the possibility of knowing truth by revelation. Specifi-
cally, those who do not believe in God do not accept the possibility of revelations from God. 
Additionally, there are some who accept the existence of a transcendent power or being, but 
do not accept the possibility of revelations of truth from that power. So this third way of 
knowing truth is embraced by many people, but certainly not by everyone.

Few people would deny that knowing truth is important. This is why we started our 
study by briefly exploring what truth is. But this is a book about science, and we need now 
to move to addressing a different question: what does science have to do with truth? The 
question is not as simple as it seems, as evidenced by the continuous disputes between 
religious and scientific communities stretching back over the past 700 years. To get at the 
relationship between science and truth, we first look at the relationship between proposi-
tions and truth claims.

1.1.3 Propositions and Truth Claims
Not all that passes as valid knowledge can be regarded as true, which I defined in the 

previous section as “the way things really are.” In many circumstances—maybe most—we 
do not actually know the way things really are. People do, of course, often use propositions 
or statements with the intention of conveying truth. But with other kinds of statements, 
people intend to convey something else.

Let’s unpack this with a few example statements. Consider the following propositions:

1.	 I have two arms.

2.	 My wife and I have three children.

3.	 I worked out at the gym last week.

4.	 My car is at the repair shop.

5.	 Texas gained its independence from Mexico in 1836.

6.	 Atoms are composed of three fundamental particles—protons, neutrons, and electrons.

7.	 God made the world.

Among these seven statements are actually three different types of claims. From the 
discussion in the previous section you may already be able to spot two of them. But some of 
these statements do not fit into any of the categories we explored in our discussion of truth. 
We can discover some important aspects about these claims by examining them one by one. 
So suppose for a moment that I, the writer, am the person asserting each of these statements 
as we examine the nature of the claim in each case.
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I have two arms. This is true. I do have two arms, as is evident to everyone who sees me.

My wife and I have three children. This is true. To me, it is just as evident as my two 
arms. I might also point out that it is true regardless of whether other people believe me 
when I say it. (Of course, someone could claim that I am delusional, but let’s just keep it 
simple here and assume I am in normal possession of my faculties.) This bit about the state-
ment being true regardless of others’ acceptance of it comes up because of a slight difference 
here between the statement about children and the statement about arms. Anyone who 
looks at me will accept the truth that I have two arms. It will be evident, that is, obvious, to 
them. But the truth about my children is only really evident to a few people (my wife and I, 
and perhaps a few doctors and close family members). Nevertheless, the statement is true.

I worked out at the gym last week. This is also true; I did work out last week. The state-
ment is evident to me because I clearly remember going there. Of course, people besides 
myself must depend on me to know it because they cannot know it directly for themselves 
unless they saw me there. Note that I cannot prove it is true. I can produce evidence, if 
needed, but the statement cannot be proven without appealing to premises that may or may 
not be true. Still, the statement is true.

My car is at the repair shop. Here is a statement that we cannot regard as a truth claim. 
It is merely a statement about where I understand my car to be at present, based on where 
I left it this morning and what the people at the shop told me they were going to do with it. 
For all I know, they may have taken my car joy riding and presently it may be flying along 
the back roads of the Texas hill country. I can say that the statement is correct so far as I 
know.

Texas gained its independence from Mexico in 1836. We Texans were all taught this 
in school and we believe it to be correct, but as with the previous statement we must stop 
short of calling this a truth claim. It is certainly a historical fact, based on a lot of historical 
evidence. The statement is correct so far as we know. But it is possible there is more to that 
story than we know at present (or will ever know) and none of those now living were there.

Atoms are composed of three fundamental particles—protons, neutrons, and electrons.  
This statement is, of course, a scientific fact. But like the previous two statements, this state-
ment is not—surprise!—a truth claim. We simply do not know the truth about atoms. The 
truth about atoms is clearly not evident to our senses. We cannot guarantee the truth of any 
premises we might use to construct a logical proof about the insides of atoms, so proof is 
not able to lead us to the truth. And so far as I know, there are no supernatural agents who 
have revealed to us anything about atoms. So we have no access to knowing how atoms 
really are. What we do have are the data from many experiments, which may or may not 
tell the whole story. Atoms may have other components we don’t know about yet. The best 
we can say about this statement is that it is correct so far as we know (that is, so far as the 
scientific community knows).

God made the world. This statement clearly is a truth claim, and we Christians joyfully 
believe it. But other people disagree on whether the statement is true. I include this example 
here because we soon see what happens when scientific claims and religious truth claims 
get confused. I hope you are a Christian, but regardless of whether you are, the issue is 
important. We all need to learn to speak correctly about the different claims people make. 

To summarize this section, some statements we make are evidently or obviously true. 
But for many statements, we must recognize that we don’t know if they actually are true. The 
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best we can say about these kinds of statements—and scientific facts are like this—is that 
they are correct so far as we know. Finally, there are metaphysical or religious statements 
about which people disagree; some claim they are true, some deny the same, and some say 
there is no way to know.

1.1.4 Truth and Scientific Claims
Let’s think a bit further about the truth of reality, both natural and supernatural. Most 

people agree that regardless of what different people think about God and nature, there is 
some actual truth or reality about nature and the supernatural. Regarding nature, there is 
some full reality about the way, say, atoms are structured, regardless of whether we currently 
understand that structure correctly. So far as we know, this reality does not shift or change 
from day to day, at least not since the early history of the universe. So the reality about at-
oms—the truth about atoms—does not change.

And regarding the supernatural, there is some reality about the supernatural realm, re-
gardless of whether anyone knows what that is. Whatever these realities are, they are truths, 
and these truths do not change either.

Now, I have observed over the years that since (roughly) the beginning of the 20th cen-
tury, careful scientists do not refer to scientific claims as truth claims. They do not profess 
to knowing the ultimate truth about how nature really is. For example, Niels Bohr, one of 
the great physicists of the 20th century, said, “It is wrong to think that the task of physics is 
to find out how nature is. Physics concerns what we can say about nature.” Scientific claims 
are understood to be statements about our best understanding of the way things are. Most 
scientists believe that over time our scientific theories get closer and closer to the truth of 
the way things really are. But when they are speaking carefully, scientists do not claim that 
our present understanding of this or that is the truth about this or that.

1.1.5 Truth vs. Scientific Facts
Whatever the truth is about the way things are, that truth is presumably absolute and 

unchanging. If there is a God, then that’s the way it is, period. And if matter is made of at-
oms as we think it is, then that is the truth about matter and it is always the truth. But what 
we call scientific facts, by their very nature, are not like this. Scientific facts are subject to 
change, and sometimes do, as new information comes becomes known through ongoing 
scientific research. Our definitions for truth and for scientific facts need to take this differ-
ence into account. As we have seen, truth is the way things really are. By contrast, here is a 
definition for scientific facts:

A scientific fact is a proposition that is supported by a great deal of evidence.

Scientific facts are discovered by observation and experiment, and by making infer-
ences from what we observe or from the results of our experiments.

A scientific fact is correct so far as we know, but can change as new information be-
comes known.

So scientific facts can change. Scientists do not put them forward as truth claims, but 
as propositions that are correct so far as we know. In other words, scientific facts are pro-
visional. They are always subject to revision in the future. As scientists make new scientific 
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discoveries, they must sometimes revise facts that were formerly considered to be correct. 
But the truth about reality, whatever it is, is absolute and unchanging.

The distinction between truth and scientific facts is crucial for a correct understanding 
of the nature of scientific knowledge. Scientific facts can change; truth does not.

1.1.6 Revelation of Truth
In Section 1.1.2, we examined the ways we can know truth. Here we need to say a bit 

more about what Christian theology says about revealed truth. 
Christians believe that the supreme revelation of God to us was through Jesus Christ 

in the incarnation. Those who knew Jesus and those who heard Jesus teach were receiving 
direct revelation from God. Jesus said, “Whoever has seen me has seen the Father” (John 
14:9).

Jesus no longer walks with us on the earth in a physical body (although we look for-
ward to his return when he will again be with us). But Christians believe that when Jesus 
departed he sent his Holy Spirit to us, and today the Spirit guides us in the truth. According 
to traditional Christian theology, God continues to reveal truth to us through the Spirit in 
two ways: Special Revelation and General Revelation. Special Revelation is the term theolo-
gians use to describe truths God teaches us in the Bible, his Holy Word. General Revelation 
refers to truths God teaches us through the world he made. Sometimes theologians have 
described Special and General Revelation as the two “books” of God’s revelation to us, the 
book of God’s Word (the Bible) and the book of God’s Works (nature). And it is crucial to 
note that the truths revealed in God’s Word and those revealed in his Works do not conflict.

Truth is not discovered the same way scientific facts are. Truth is true for all people, all 
times, and all places. Truth never changes. Here are just a few examples of the many truths 
revealed in God’s Word:

•	 Jesus is the divine Son of God (Matthew 16:16).

•	 All have sinned and fall short of what God requires (Romans 3:23).

•	 All people must die once and then face judgment (Hebrews 9:27).

•	 God is the creator of all that is (Colossians 1:16, Revelation 4:11).

•	 God loves us (John 3:16).

Examples of Changing Scientific Facts	
In 2006, the planet Pluto was declared not to be a planet any more.

In the 17th century, the fact that the planets and moon all orbit the earth changed to the pres-
ent fact that the planets all orbit the sun, and only the moon orbits the earth.

At present we know of only one kind of matter that causes gravitational fields. This is the mat-
ter made up of protons, electrons, and neutrons, which we discuss in a later chapter. But scien-
tists now think there may be another kind of matter contributing to the gravitational forces in 
the universe. They call it “dark matter” because apparently this kind of matter does not reflect 
or refract light the way ordinary matter does. (We also study reflection and refraction later 
on.) For the existence of dark matter to become a scientific fact, a lot of evidence is required, 
evidence which is just beginning to emerge. If we are able to get enough evidence, then the 
facts about matter will change.
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Each of these statements is true, and we know they are true because God has revealed 
them to us in his word. (The reasons for believing God’s word are important for all of us to 
know and understand, but that is a subject for a different course of study.)

1.2	 The Cycle of Scientific Enterprise

1.2.1 Science
Having established some basic principles about the distinction between scientific facts 

and truth, we are now ready to define science itself and examine what science is and how it 
works. Here is a definition:

Science is the process of using experiment, observation, and logical thinking to build 
“mental models” of the natural world. These mental models are called theories.

We do not and cannot know the natural world perfectly or completely, so we construct 
models of how it works. We explain these models to one another with descriptions, dia-
grams, and mathematics. These models are our scientific theories. Theories never explain 
the world to us perfectly. To know the world perfectly, we would have to know the absolute 
truth about reality just as God knows it, which in this present age we do not. So theories 
always have their limits, but we hope they become more accurate and more complete over 
time, accounting for more and more physical phenomena (data, scientific facts), and help-
ing us to understand the natural world as a coherent whole.

Figure 1.1. The Cycle of Scientific Enterprise.
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Scientific knowledge is continuously changing and advancing through a cyclic process 
that I call the Cycle of Scientific Enterprise, represented in Figure 1.1. In the next few sec-
tions, we examine the individual parts of this cycle in detail.

1.2.2 Theories
Theories are the grandest thing in science. In fact, it is fair to say that theories are the 

glory of science, and developing good theories is what science is all about. Electromagnetic 
field theory, atomic theory, quantum theory, the general theory 
of relativity—these are all theories in physics that have had a 
profound effect on scientific progress and on the way we all live.1

Now, even though many people do not realize it, all scien-
tific knowledge is theoretically based. Let me explain. A theory is 
a mental model or explanatory system that explains and relates 
together most or all of the scientific facts (the data) in a certain 
sphere of knowledge. A theory is not a hunch or a guess or a wild 
idea. Theories are the mental structures we use to make sense of 
the data we have. We cannot understand any scientific data without a theory to organize it 
and explain it. This is why I write that all scientific knowledge is theoretically based. And 
for this reason, it is inappropriate and scientifically incorrect to scorn these explanatory 
systems as “merely a theory” or “just a theory.” Theories are explanations that account for a 
lot of different scientific facts. If a theory has stood the test of time, that means it has wide 
support within the scientific community.

It is popular in some circles to speak dismissively of certain scientific theories, as if they 
represent some kind of untested speculation. It is simply incorrect—and very unhelpful—to 
speak this way. As students in high school science, one of the important things you need 
to understand is the nature of scientific knowledge, the purpose of theories, and the way 
scientific knowledge progresses. These are the issues this chapter is about.

All useful scientific theories must possess several characteristics. The two most impor-
tant ones are: 

•	 The theory accounts for and explains most or all of the related scientific facts.

•	 The theory enables new hypotheses to be formed and tested. 

Theories typically take decades or even centuries to gain credibility. If a theory gets 
replaced by a new, better theory, this also usually takes decades or even centuries to happen. 
No theory is ever “proven” or “disproven” and we should not speak of them in this way. We 
also should not speak of them as being “true” because, as we have seen, we do not use the 
word “truth” when speaking of scientific knowledge. Instead, we speak of scientific facts be-
ing correct so far as we know, or of current theories as representing our best understanding, 
or of theories being successful and useful models that lead to accurate predictions.

An experiment in which the hypothesis is supported by the experimental result is said 
to support the theory. After such an experiment, the theory is stronger but it is not proven. 
If a hypothesis is not supported by an experiment, the theory might be weakened but it is 
not disproven. Scientists require a great deal of experimental evidence before a new theory 
can be established as the best explanation for a body of data. This is why it takes so long for 
theories to become widely accepted. And since no theory ever explains everything perfectly, 

1	 The term law is just a historical (and obsolete) term for what we now call a theory.
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there are always phenomena we know about that 
our best theories do not adequately explain. Of 
course, scientists continue their work in a cer-
tain field hoping eventually to have a theory that 
does explain all the scientific facts. But since no 
theory explains everything perfectly, it is impos-
sible for one experimental failure to bring down 
a theory. Just as it takes a lot of evidence to estab-
lish a theory, so it takes a large and growing body 
of conflicting evidence before scientists abandon 
an established theory.

At the beginning of this section, I state that 
theories are mental models. This statement needs 
a bit more explanation. A model is a representa-
tion of something, and models are designed for 
a purpose. You have probably seen a model of the organs in the human body in a science 
classroom or textbook. A model like this is a physical model and its purpose is to help 
people understand how the human body is put together. A mental model is not physical; it 
is an intellectual understanding, although we often use illustrations or physical models to 
help communicate to one another our mental ideas. But as in the example of the model of 
the human body, a theory is also a model. That is, a theory is a representation of how part 
of the world works. Frequently, our models take the form of mathematical equations that 
allow us to make numerical predictions and calculate the results of experiments. The more 
accurately a theory represents the way the world works, which we judge by forming new 
hypotheses and testing them with experiments, the better and more successful the theory is.

To summarize, a successful theory represents the natural world accurately. This means 
the model (theory) is useful because if a theory is an accurate representation, then it leads 

Key Points About Theories	
1.	 A theory is a way of modeling nature, enabling us to explain why things happen in the 

natural world from a scientific point of view.

2.	 A theory tries to account for and explain the known facts that relate to it.

3.	 Theories must enable us to make new predictions about the natural world so we can learn 
new facts.

4.	 Strong, successful theories are the glory and goal of scientific research.

5.	 A theory becomes stronger by producing successful predictions that are supported by 
experiment. A theory is gradually weakened when new experimental results repeatedly 
turn out to be inconsistent with the theory.

6.	 It is incorrect to speak dismissively of successful theories because theories are not just 
guesses.

7.	 We don’t speak of theories as being proven or disproven. Instead, we speak of them in 
terms such as how successful they have been at making predictions and how accurate the 
predictions have been.

Figure 1.2. Key points about theories.

Examples of Famous Theories
In the next chapter, we encounter Ein-
stein’s general theory of relativity, one of 
the most important theories in modern 
physics. Einstein’s theory represents our 
best current understanding of how grav-
ity works.

Another famous theory we address later 
is the kinetic theory of gases, our present 
understanding of how molecules of gas 
too small to see are able to create pres-
sure inside a container.
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to accurate predictions about nature. When a theory repeatedly leads to predictions that 
are confirmed in scientific experiments, it is a strong, useful theory. The key points about 
theories are summarized in Figure 1.2.

1.2.3 Hypotheses
A hypothesis is a positively stated, informed prediction, 

with an explanation, about what will happen in certain cir-
cumstances. We say a hypothesis is an informed prediction 
because when we form hypotheses we are not just speculating 
out of the blue. We are applying a certain theoretical under-
standing of the subject to the new situation before us and predicting what will happen or 
what we expect to find in the new situation based on the theory the hypothesis is coming 
from. Every scientific hypothesis is based on a particular theory.

Often hypotheses are worded 
as if-then-because statements, such 
as, “If various forces are applied to 
a pickup truck, then the truck ac-
celerates at a rate that is in direct 
proportion to the net force because 
of Newton’s second law.” Every sci-

entific hypothesis is based on a theory and it is the 
hypothesis that is directly tested by an experiment. 
If the experiment turns out the way the hypoth-
esis predicts, the hypothesis is supported by the 
experimental result and the theory it came from is 
strengthened. Of course, the hypothesis may not 

Key Points About Hypotheses	
1.	 A hypothesis is an informed pre-

diction about what will happen in 
certain circumstances.

2.	 Every hypothesis is based on a par-
ticular theory.

3.	 Well-formed scientific hypotheses 
must be testable, which is what 
scientific experiments are de-
signed to do.

Figure 1.3. Key points about hypotheses.
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Examples of Famous Hypotheses	
Einstein used his general theory of relativity to make an incredible prediction in 1917: that 
gravity causes light to bend as it travels through space. In the next chapter, you read about the 
stunning result that occurred when this hypothesis was put to the test.

The year 2012 was a very important year for the standard theory in the world of subatomic par-
ticles, called the Standard Model. In 1964, this theory led to the prediction that there are weird 
particles in nature, now called Higgs Bosons, which no one had ever detected. Until 2012, that 
is! An enormous machine that could detect these particles, called the Large Hadron Collider, 
was built in Switzerland and completed in 2008. In 2012, scientists announced that the Higgs 
Boson had been detected at last, a major victory for the Standard Model, and for Peter Higgs, 
the physicist who first proposed the particle that now bears his name.
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be supported by the experiment. We see how scientists respond to this situation in Section 
1.2.6.

The terms theory and hypothesis are often used interchangeably in common speech, but 
in science they mean different things. For this reason you should make note of the distinc-
tion.

One more point about hypotheses. A hypothesis that cannot be tested is not a scientific 
hypothesis. For example, horoscopes purport to predict the future with statements like, 
“You will meet someone important to your career in the coming weeks.” Statements like this 
are so vague they are untestable and do not qualify as scientific hypotheses.

The key points about hypotheses are summarized in Figure 1.3.

1.2.4 Experiments
Experiments are tests of the predictions in hypotheses, under con-

trolled conditions. Effective experiments are difficult to perform. Thus, 
for any experimental outcome to become regarded as a scientific fact it 
must be replicated by several different experimental teams, often work-
ing in different labs around the world. Scientists have developed rig-
orous methods for conducting valid experiments. We consider these 
briefly in Section 1.3.

1.2.5 Analysis
In the Analysis phase of the Cycle of Scien-

tific Enterprise, researchers must interpret the ex-
perimental results. The results of an experiment are 
essentially data, and data always have to be inter-
preted. The main goal of this analysis is to deter-
mine whether the experimental data support the 
hypothesis. If they do, then the experiment has pro-
duced new scientific facts that are consistent with 
the original theory because the hypothesis is based on that theory. As a result, the support 
for the theory has increased—the theory was successful in generating a hypothesis that was 
supported by experiment. As a result of the experiment, our confidence in the theory as a 
useful model has increased and the theory is even more strongly supported than before. 

1.2.6 Review
If the outcome of an experiment does not 

support the hypothesis, the researchers must con-
sider all the possibilities for why this might have 
happened. Why didn’t our theory, which is our 
best explanation of how things work, enable us to 
form a correct prediction? There are a number of 
possibilities, beginning with the experiment and 
going backwards around the cycle:

•	 The experiment may have been flawed. Scientists double check everything about the 
experiment, making sure all equipment is working properly, double checking the cal-
culations, looking for unknown factors that may have inadvertently influenced the out-
come, verifying that the measurement instruments are accurate enough and precise 
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enough to do the job, and so on. They also wait for other experimental teams to try the 
experiment to see if they get the same results or different results, and then compare. 
(Although, naturally, every scientific team likes to be the first one to complete an im-
portant new experiment.)

•	 The hypothesis may have been based on a incorrect understanding of the theory. May-
be the experimenters did not understand the theory well enough, and maybe the hy-
pothesis is not a correct statement of what the theory says will happen.

•	 The values used in the calculation of the hypothesis’ predictions may not have been 
accurate or precise enough, throwing off the hypothesis’ predictions.

•	 Finally, if all else fails, and the hypothesis still is not supported by experiment, it is time 
to look again at the theory. Maybe the theory can be altered to account for this new 
scientific fact. If the theory simply cannot account for the new scientific fact, then the 
theory has a weakness, namely, there are scientific facts it doesn’t adequately account 
for. If enough of these weaknesses accumulate, then over a long period of time (like 
decades) the theory might eventually need to be replaced with a different theory, that 
is, another, better theory that does a better job of explaining all the scientific facts we 
know. Of course, for this to happen someone would have to conceive of a new theory, 
which usually takes a great deal of scientific insight. And remember, it is also possible 
that the scientific facts themselves can change.

1.3	 The Scientific Method

1.3.1 Conducting Reliable Experiments
The so-called scientific method that you have been studying ever since about fourth 

grade is simply a way of conducting reliable experiments. Experiments are an important 
part of the Cycle of Scientific Enterprise, and so the scientific method is important to know. 
You probably remember studying the steps in the scientific method from prior courses, so 
they are listed in Table 1.1 without further comment.

We will be discussing variables and measurements a lot in this course, so we should 
take the opportunity here to identify some of the language researchers use during the ex-
perimental process. In a scientific experiment, the researchers have a question they are 
trying to answer (from the State the Problem step in the scientific method), and typically 
it is some kind of question about the way one physical quantity affects another one. So the 
researchers design an experiment in which one quantity can be manipulated (that is, de-
liberately varied in a controlled fashion) while the value of another quantity is monitored.

A simple example of this in everyday life that you can easily relate to is varying the 
amount of time you spend each week studying for your math class in order to see what 

effect the time spent has on the 
grades you earn. If you reduce 
the time you spend, will your 
grades go down? If you increase 
the time, will they go up? A pre-
cise answer depends on a lot of 
things, of course, including the 
person involved, but in general 
we would all agree that if a stu-Table 1.1. Steps in the scientific method.

The Scientific Method

1.	 State the problem. 5.	 Collect data.

2.	 Research the problem. 6.	 Analyze the data.

3.	 Form a hypothesis. 7.	 Form a conclusion.

4.	 Conduct an experiment. 8.	 Repeat the work.
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dent varies the study time enough we would expect to see the grades vary as well. And in 
particular, we would expect more study time to result in higher grades. The way your study 
time and math grades relate together can be represented in a diagram such as Figure 1.4.

Now let us consider this same concept in the context of scientific experiments. An ex-
periment typically involves some kind of complex system that the scientists are modeling. 
The system could be virtually anything in the natural world—a galaxy, a system of atoms, 
a mixture of chemicals, a protein, or a badger. The variables in the scientists’ mathemati-
cal models of the system correspond to the physical quantities that can be manipulated or 
measured in the system. As I describe the different kinds of variables, refer to Figure 1.5.

1.3.2 Experimental Variables
When performing an experiment, the variable that is deliberately manipulated by the 

researchers is called the explanatory variable. As the explanatory variable is manipulated, 
the researchers monitor the effect this variation has on the response variable.  In the example 
of study time versus math grade, the study time is the explanatory variable and the grade 
earned is the response variable.

Usually, a good experimental design allows only one explanatory variable to be ma-
nipulated at a time so that the researchers can tell definitively what its effect is on the re-
sponse variable. If more than one explanatory variable were changing during the course of 
the experiment, researchers may not be able to tell which one was causing the effect on the 
response variable.

A third kind of variable that plays a role in experiments is the lurking variable. A lurk-
ing variable is a variable that affects the response variable without the researchers being 
aware of it. This is undesirable, of course, because with unknown influences present the 
researchers may not be able to make a correct conclusion about the effect of the known 
explanatory variables on the response variable under study. So researchers have to study 

Figure 1.4. Study time and math grades in a simple experimental system.
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Do You Know ...	 What are double-blind experiments?
The human mind is so powerful that if a person believes a new medication might 

help, the person’s condition can sometimes improve even if the medication itself isn’t 
doing a thing! This is amazing, but in medical research it means that the researchers 
can have a hard time determining whether a person is helped by the new medication, 
or by feeling positively about the medication, or even by the attention given to him 
or her by the doctor.

Pictured below is Lauren Wood, a clinician involved in vaccine research at the Cen-
ter for Cancer Research, which is part of the National Cancer Institute. Just as with 

every other scientific researcher, Dr. Wood’s research 
is conducted according to methods that have been 
developed to ensure that people’s beliefs about the 
research don’t influence the outcome of the research.

The approach is to divide the patients who will par-
ticipate in testing a new medication into two groups, 
control and experimental. The experimental group is 
given the new medication. The control group is given 
a placebo—a fake medication such as a sugar pill—
that has no effect on the person’s medical condition. 
Further, none of the patients know whether they are 
given the placebo or the real medication. This tech-
nique, called a blind experiment, allows the research-
ers to determine whether a new medication actually 
helps, as they compare the results of the control and 
experimental groups.

But there’s more. It turns out that the researchers 
themselves can affect the results of the experiment if 
they know which patients are receiving a placebo and 
which ones are receiving the medication under study. 
How can this happen? Well, if the researchers know 

who is getting the real medication, they might subconsciously act more positively 
with them than with other patients. This might be because the researchers expect 
those getting the new medication to improve, and this expectation gets subcon-
sciously communicated to the patients. The positive attitude might be perceived as 
more encouraging and patients might improve just because of the encouragement!

The way around this dilemma is to use a double-blind experiment. In a double-blind 
experiment, neither the patients nor the researchers know which patients are getting 
the placebo and which are getting the real treatment. A team of technicians is in the 
middle, administering the medication and keeping records of who received what. The 
researchers are not allowed to see the lists until the research results are finalized. The 
double-blind experiment is the standard protocol followed today for new medical 
research.

their experimental projects very carefully to minimize the possibility of lurking variables 
affecting their results.

In our example about study time and math grades, there could be a number of lurking 
variables affecting the results of the experiment. Possible lurking variables include changes 
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in the difficulty of the material from one chapter to the next and variations in the student’s 
ability to concentrate due to fatigue from seasonal sports activities.

1.3.3 Experimental Controls
The last thing we consider in this section is an important way researchers control an 

experiment to ensure the results are valid. You are probably aware that developing new 
medical treatments is one of the major goals of experimental research in the 21st century. 
Many experiments in the field of medical research are designed to test some new kind of 
treatment by comparing the results of the new treatment to those obtained using a conven-
tional treatment or no treatment at all. This is the situation in medical research all the time 
for experiments testing new therapies, medications, or procedures.

Clinical trials are experiments conducted by researchers on people to test new therapies 
or medications. In experiments like these, the people (patients) involved in the study are 
divided into two groups—the control group and the experimental group. The control group 
receives no treatment or some kind of standard treatment. The experimental group receives 
the new treatment being tested. The results of the experimental group are assessed by com-
paring them to those of the control group.

Another example will help to clarify all these terms. Let’s say researchers have devel-
oped a variety of fruit tree that they believe is more resistant to drought than other varieties. 
According to the researchers’ theoretical understanding of how chemical reactions and wa-
ter storage work in the biological systems of the plant, they hypothesize that the new variety 
of tree will be able to bear better fruit during drought conditions. To test this hypothesis 
by experiment, the scientists develop a group of the new trees. Then they place the trees in 
a test plot, along with other trees of other varieties, and see how they perform. Figure 1.6 
shows a researcher working in an agricultural test plot. In our fruit tree example, the trees 
of the new variety are in the experimental group and the trees of the other varieties are in 
the control group.

The response variable is the quality of the plant’s 
fruit. Researchers expect that under drought conditions 
the fruit of the new variety will be better than the fruit of 
the other varieties. The explanatory variable is the unique 
feature of the new variety that relates to the plant’s use 
of water. The trees are exposed to drought conditions in 
the experiment. If the new variety produces higher qual-
ity fruit than the control group, then the hypothesis is 
supported, and the theory that led to the hypothesis has 
gained credibility through this success. One can imagine 
many different lurking variables that could affect the out-
come of this experiment without the scientists’ aware-
ness. For example, the new variety trees could be planted 
in locations that receive different amounts of moisture or 
sun than the locations where the control group trees are, 
or, the nutrients in the soil in different locations might 
vary.

In a good experimental design, researchers seek to 
identify such factors and take measures to ensure that 
they do not affect the outcome of the experiment. They 
do this by making sure there are trees from both the ex-

Figure 1.6. An agricultural research 
assistant working in a test plot.
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Chapter 1 Exercises
As you go through the chapters in this book, always answer the questions in complete 
sentences, using correct grammar and spelling.

Here is a tip that will help improve the quality of your written responses: avoid pro-
nouns! Pronouns almost always make your responses vague or ambiguous. If you 
want to receive full credit for written responses, avoid them. (Oops. I mean, avoid 
pronouns!)

Study Questions
Answer the following questions with a few complete sentences.

1.	 Distinguish between theories and hypotheses.

2.	 Explain why a single experiment can never prove or disprove a theory.

3.	 Explain how an experiment can still provide valuable data even if the hypothesis 
under test is not supported by the experimental result.

4.	 Explain the difference between truth and facts and describe the sources of each.

5.	 State the two primary characteristics of a theory.

6.	 Does a theory need to account for all known facts? Why or why not?

7.	 It is common to hear people say, “I don’t accept that; it’s just a theory.” What is the 
error in a comment like this?

8.	 Distinguish between facts and theories.

9.	 Distinguish between explanatory variables, response variables, and lurking vari-
ables.

10.	 Why do good experiments that seek to test some kind of new treatment or ther-
apy include a control group?

11.	 Explain specifically how the procedure you followed in the Pendulum Experiment 
satisfies every step of the “scientific method.”

12.	 This chapter argues that scientific facts should not be regarded as true. Someone 
might question this and ask, If they aren’t true, then what are they good for? De-
velop a response to this question.

13.	 Explain what a model is and why theories are often described as models.

14.	 Consider an experiment that does not deliver the result the experimenters had 
expected. In other words, the result is negative because the hypothesis is not 
supported by the data. There are many reasons why this might happen. Consider 
each of the following elements of the Cycle of Scientific Enterprise. For each one, 

perimental group and the control group in all the different conditions the trees will experi-
ence. This way, variations in sunlight, soil type, soil water content, elevation, exposure to 
wind, and other factors will be experienced equally by trees in both groups.
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describe how it might be the driving factor that results in the experiment’s failure 
to support the hypothesis.
a.	 the experiment
b.	 the hypothesis
c.	 the theory

15.	 Identify the explanatory and response variables in the Pendulum Experiment, 
and identify two realistic possibilities for ways the results may have been influ-
enced by lurking variables.

Do You Know ...	 How did Sir Humphry Davy become a hero?
Sir Humphry Davy (1778–1829) was one 

of the leading experimenters and inven-
tors in England in the early nineteenth 
century. He conducted many early experi-
ments with gases; discovered sodium, po-
tassium, and numerous other elements; 
and produced the first electric light from 
a carbon arc.

In the early nineteenth century, explo-
sions in coal mines were frequent, result-
ing in much tragic loss of life. The explo-
sions were caused by the miners’ lamps 
igniting the methane gas found in the 
mines.

Davy became a national hero when he 
invented the Davy Safety Lamp (below). 
This lamp incorporated an iron mesh 
screen around the flame. The cooling 

from the iron reduces the flame temperature 
so the flame does not pass through the mesh, 
and thus cannot cause an explosion. The Davy 
Lamp was produced in 1816 and was soon in 
wide use.

Davy’s experimental work proceeded by 
reasoning from first principles (theory) to hy-
pothesis and experiment. Davy stated, “The 
gratification of the love of knowledge is de-
lightful to every refined mind; but a much 
higher motive is offered in indulging it, when 
that knowledge is felt to be practical power, 
and when that power may be applied to less-
en the miseries or increase the comfort of our 
fellow-creatures.”
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Orrery

Orreries, mechanical models of the solar system, were well-known teaching tools in the 
18th century, often forming the centerpiece of lessons on astronomy. They demonstrated 
Copernicus’ theory that the earth and other planets orbit the sun. This example, from 
around 1750, is smaller but otherwise similar to George II’s grand orrery.

This photo of the orrery was taken in the British Museum in London.
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2.1	 Computations in Physics
In this chapter, you begin mastering the skill of applying mathematics to the study of 

physics. To do this well, you must know a number of things about the way measurements 
are handled in scientific work. You also need to have a solid problem-solving strategy you 
can depend on to help you solve problems correctly without becoming confused. These top-
ics are addressed in this chapter.

2.1.1 The Metric System
Units of measure are crucial in science. Science is about making measurements and a 

measurement without its units of measure is a meaningless number. For this reason, your 
answers to computations in scientific calculations must always show the units of measure.

The two major unit systems you should know about are the SI (from the French Sys-
tème international d’unités), typically known in the United States as the metric system, and 

OBJECTIVES
Memorize and learn how to use these equations:

v = d
t 		  a =

v f −vi
t

After studying this chapter and completing the exercises, students will be able to do 
each of the following tasks, using supporting terms and principles as necessary: 

1.	 Define and distinguish between velocity and acceleration.
2.	 Use scientific notation correctly with a scientific calculator.
3.	 Calculate distance, velocity, and acceleration using the correct equations, MKS 

and USCS units, unit conversions, and units of measure.
4.	 Use from memory the conversion factors, metric prefixes, and physical constants 

listed in Appendix A.
5.	 Explain the difference between accuracy and precision and apply these terms to 

questions about measurement.
6.	 Demonstrate correct understanding of precision by using the correct number of 

significant digits in calculations and rounding.
7.	 Describe the key features of the Ptolemaic model of the heavens, including all the 

spheres and regions in the model.
8.	 State several additional features of the medieval model of the heavens and 

relate them to the theological views of the Christian authorities opposing 
Copernicanism.

9.	 Briefly describe the roles and major scientific models or discoveries of Copernicus, 
Tycho, Kepler, and Galileo in the Copernican Revolution. Also, describe the 
significant later contributions of Isaac Newton and Albert Einstein to our theories 
of motion and gravity.

10.	 Describe the theoretical shift that occurred in the Copernican Revolution and 
how Christian officials (both supporters and opponents) were involved.

11.	 State Kepler’s first law of planetary motion.
12.	 Describe how the gravitational theories of Kepler, Newton, and Einstein illustrate 

the way the Cycle of Scientific Enterprise works.
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the USCS (U.S. Customary System). You 
have probably studied these systems before 
and should already be familiar with some of 
the SI units and prefixes, so our treatment 
here will be brief.

If you think about it, you would prob-
ably agree that the USCS is cumbersome. 
One problem is that there are many differ-
ent units of measure for every kind of physi-
cal quantity. For example, just for measur-
ing length or distance we have the inch, 
foot, yard, and mile. The USCS is also full of 
random numbers like 3, 12, and 5,280, and 

there is no inherent connection between units for different types of quantities.
By contrast, the SI system is simple and has many advantages. There is usually only one 

basic unit for each kind of quantity, such as the meter for measuring length. Instead of hav-
ing many unrelated units of measure for measuring quantities of different sizes, fractional 
and multiple prefixes based on powers of ten are used with the units to accommodate vari-
ous sizes of measurements.

A second advantage is that since quantities with different prefixes are related by some 
power of ten, unit conversions can often be performed mentally. To convert 4,555 ounces 
into gallons, we first have to look up the conversion from ounces to gallons (which is hard 
to remember), and then use a calculator to perform the conversion. But to convert 40,555 
cubic centimeters into cubic meters is simple—simply divide by 1,000,000 and you have 
0.040555 m3. (If you are not clear on the reason for dividing by 1,000,000, just hold on until 
we get to the end of Section 2.1.3.)

Another SI advantage is that the units for different types of quantities relate to one 
another in some way. Unlike the gallon and the foot, which have nothing to do with each 
other, the liter (a volume) relates to the centimeter (a length): 1 liter = 1,000 cubic centime-
ters.1 For all these reasons, the USCS is not used much in scientific work. The SI system is 
the international standard and it is important to know it well.

In the SI unit system, there are seven base units, listed in Table 2.1. (In this text, we 
use only the first five of them.) There are also many additional units of measure, known as 
derived units. All the derived units are formed by various combinations of base units. To 
illustrate, below are a few examples of derived units that we discuss and use in this book. 
Note, however, that we won’t be working much with the messy fractions; they are simply 
shown to illustrate how base units are combined to form derived units.

•	 the newton (N) is the SI unit for measuring force: 1 N =1 kg ⋅m
s2

•	 the joule (J) is the SI unit for measuring energy: 1 J =1 kg ⋅m2

s2

•	 the watt (W) is the SI unit for measuring power: 1 W =1 kg ⋅m2

s3

1  The liter is not actually an official SI unit of measure, but it is used all the time anyway in scientific 
work.

Unit Symbol Quantity

meter m length

kilogram kg mass

second s time

ampere A electric current

kelvin K temperature

candela Cd luminous intensity

mole mol amount of substance

Table 2.1. The seven base units in the SI unit system.
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Using the SI system requires knowing the units of measure—base and derived—and 
the prefixes that are applied to the units to form fractional units (such as the centimeter) 
and multiple units (such as the kilometer). The complete list of metric prefixes is shown in 
Appendix A in Table A.1. The short list of prefixes you need to know by memory for use in 
this course is in Table A.2. Note that even though the kilogram is a base unit, prefixes are 
not added to the kilogram. Instead, prefixes are added to the gram to form units such as the 
milligram and microgram.

2.1.2 MKS Units
A handy subset of the SI system 

is the so-called MKS system. The MKS 
system uses only base units—such as 
the meter, kilogram, and second (hence, 
“MKS”) as units for mass, length, and 
time—along with other units derived 
from the base units. The mass, length, 
and time units, and the symbols and 
variables used with them, are listed in 
Table 2.2. 

Dealing with different systems of units can become quite confusing. But the wonderful 
thing about sticking to the MKS system is that any calculation performed with MKS units 
produces a result in MKS units. This is why the MKS system is so handy. The MKS system 
dominates calculations in physics and we use it almost all the time in this course.

To convert the units of measure given in problems into MKS units, you must know the 
conversion factors listed in Appendix A in Tables A.2, A.3, and A.4. Table A.5 lists several 
common unit conversions that you are not required to memorize but should have handy 
when working problem assignments.

2.1.3 Converting Units of Measure
One of the most basic skills scientists and engineers use is re-expressing quantities into 

equivalent quantities with different units of measure. These calculations are called unit con-
versions. Mastery of this skill is essential for any student in high school science, and you use 
it a lot in this course. You have studied unit conversions in your math classes for the past few 
years. But this skill is so important in science that we are going take the time in this section 
to review in detail how to perform unit conversions.

Let’s begin with the basic principle of how this works. First, you know that multiply-
ing any value by unity (one) leaves its value unchanged. Second, you also know that in any 
fraction if the numerator and denominator are equivalent, the value of the fraction is unity, 
which means one. A “conversion factor” is simply a fractional expression in which the nu-
merator and denominator are equivalent ways of writing the same physical quantity. This 
means a conversion factor is just a special way of writing unity (one). Third, we know that 
when multiplying fractions, factors that appear in both the numerator and denominator 
may be “cancelled out.” So when performing common unit conversions, what we are doing 
is repeatedly multiplying our given quantity by unity so that cancellations alter the units of 
measure until they are expressed the way we wish. Since all we are doing is multiplying by 
one, the value of our original quantity is unchanged; it simply looks different because it is 
expressed with different units of measure.

Variable Variable 
Symbol

Unit Unit 
Symbol

length d (distance)
L (length)
h (height)

r (radius), etc.

meter m

mass m kilogram kg

time t second s

Table 2.2. The three base units in the MKS system.
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Let me elaborate a bit more on the idea of unity I mention above, using one common 
conversion factor as an example. School kids all learn that there are 5,280 feet in one mile, 
which means 5,280 ft  = 1 mi. One mile and 5,280 feet are equivalent ways of writing the 
same length. If we place these two expressions into a fraction, the numerator and denomi-
nator are equivalent, so the value of the fraction is unity, regardless of the way we write it. 
Th e equation 5,280 ft  = 1 mi can be written in a conversion factor two diff erent ways, and 
the fraction equals unity either way:

5280 ft
1 mi

= 1 mi
5280 ft

=1

So if you have a measurement such as 43,000 feet that you wish to re-express in miles, 
the conversion calculation is written this way:

43,000 ft ⋅ 1 mi
5280 ft

= 8.1 mi

Th ere are two important comments to make here. First, since any conversion factor 
can be written two ways (depending on which quantity is placed in the numerator), how 
do we know which way to write the conversion factor? Well, we know from algebra that 
when we have quantities in the numerator of a fraction that are multiplied, and quantities 
in the denominator of the fraction that are multiplied, any quantities that appear in both the 
numerator and denominator cancel. Most units of measure are mathematically treated as 
multiplied quantities that can be cancelled out.2 In the example above, we desire that “feet” 
in the given quantity (which is in the numerator) cancels out, so the conversion factor is 
written with feet in the denominator and miles in the numerator.

Second, if you perform the calculation above, the result that appears on your calculator 
screen is 8.143939394. So why didn’t I write down all those digits in my result? Why did I 
round my answer off  to simply 8.1 miles? Th e answer to that question has to do with the sig-

2 An example of a unit that cannot always be treated this way is the degree Fahrenheit.

Do You Know ... How are the base units defi ned?
The defi nitions of the base units all have interest-

ing stories behind them. In the past, several units were 
defi ned by physical objects, such as a metal bar (the 
meter) or metal cylinder (the kilogram). But over time 
these defi nitions have been replaced. (The last one was 
the kilogram, replaced in 2019.) Now, each base unit 
is defi ned in terms of a physical constant that itself is 
defi ned with a specifi c, exact value. The defi nitions of 
all but two of the units also depend on other unit defi -
nitions, as the arrows in the graphic indicate. The offi  -
cial defi nition of the second is based on waves of light 
emitted by cesium atoms. The speed of light is defi ned 
as 299,792,458 m/s, and the meter is defi ned as the dis-
tance light travels in 1/299,792,458 seconds.

h

N

Kk

e

c s

kg

mol

cdK
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nificant digits in the value 43,000 ft that we started with. We address the issue of significant 
digits later in this chapter, but in the examples that follow I always write the results with the 
correct number of significant digits for the values involved in the problem.

There are several important techniques you must use to help you perform unit conver-
sions correctly; these are illustrated below with examples. You should rework each of the 
examples on your own paper as practice to make sure you can do them correctly. As a re-
minder, the conversion factors used in the examples below are all listed in Appendix A. You 
should study Appendix A to see which ones you must know by memory and which ones are 
provided to you on quizzes.

1   Use only horizontal bars in your unit fractions. Never use slant bars.

In printed materials, one often sees values written with a slant fraction bar in the units, as 
in the value 35 m/s. Although writing the units this way is fine for a printed document, you 
should not write values this way when you are performing unit conversions. This is because 
it is easy to get confused and not notice that one of the units is in the denominator in such 
an expression (s, or seconds, in my example), and the conversion factors used must take 
this into account.

 Example 2.1

Convert 57.66 mi/hr into m/s.

Writing the given quantity with a horizontal bar makes it clear that “hour” is in the denomi-
nator. This helps you to write the hour-to-seconds factor correctly.

57.66 mi
hr

⋅1609 m
mi

⋅ 1 hr
3600 s

= 25.77 m
s

Now that you have your result, you may write it as 25.77 m/s if you wish, but do not use 
slant fraction bars in the units when you are working out the unit conversion.

2   The term “per” implies a fraction.

Some units of measure are commonly written with a “p” for “per,” such as mph for miles per 
hour or gps for gallons per second. Change these expressions to fractions with horizontal 
bars when you work out the unit conversion.

 Example 2.2

Convert 472.15 gps to L/hr.

When you write down the given quantity, change the gps to gal/s, and write these units with 
a horizontal bar:

472.15 gal
s
⋅ 3.785 L

1 gal
⋅ 3600 s

1 hr
= 6,434,000 L

hr
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3   Use the ×  and ÷  keys correctly when entering values into your calculator.

When dealing with several numerator terms and several denominator terms, multiply all 
the numerator terms together first, hitting the ×  key between each, then hit the ÷  key and 
enter all the denominator terms, hitting the ÷  key between each. This way you do not need 
to write down intermediate results and you do not need to use any parentheses.

 Example 2.3

Convert 43.17 mm/hr into km/yr.

The setup with all the conversion factors is as follows:

43.17 mm
hr

⋅ 1 m
1000 mm

⋅ 1 km
1000 m

⋅ 24 hr
1 day

⋅365 day
1 yr

= 0.378 km
yr

To execute this calculation in your calculator, enter the values and operations in this se-
quence:

43.17× 24×365÷1000÷1000=

4   When converting units for area and volume such as cm2 or m3, use the appropriate 
length conversion factor twice for areas or three times for volumes.

The unit “cm2” for an area means the same thing as “cm × cm.” Likewise, “m3” means “m × 
m × m.” So when you use a length conversion factor such as 100 cm = 1 m or 1 in = 2.54 cm, 
you must use it twice to get squared units (areas) or three times to get cubed units (vol-
umes).

 Example 2.4

Convert 3,550 cm3 to m3.

3550 cm3 ⋅ 1 m
100 cm

⋅ 1 m
100 cm

⋅ 1 m
100 cm

= 0.00355 m3

Notice in Example 2.4 that the unit cm occurs three times in the denominator, giving 
us cm3 when they are all multiplied together. This cm3 term in the denominator cancels with 
the cm3 term in the numerator. And since the m unit occurs three times in the numerator, 
they multiply together to give us m3 for the units in our result. Notice also that the denomi-
nator is 100∙100∙100 = 1,000,000. This is why I write in Section 2.1.1 that to convert from 
cm3 to m3 we just divide by 1,000,000. Pay attention to this and don’t make the common 
(and silly) mistake of dividing by 100!

This issue only arises when you have a unit raised to a power, such as when using a 
length unit to represent an area or a volume. When using a conversion factor such as 3.785 L 
= 1 gal, the units of measure are written using units that are strictly volumetric (liters and 
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gallons), and are not obtained from lengths the way in2, ft2, cm3, and m3 are. Another com-
mon unit that uses a power is acceleration, which has units of m/s2 in the MKS unit system.

 Example 2.5

Convert 5.85 mi/hr2 into MKS units.

5.85 mi
hr2 ⋅

1609 m
1 mi

⋅ 1 hr
3600 s

⋅ 1 hr
3600 s

= 0.000726 m
s2

With this example you see that since the “hour” unit is squared in the given quantity, the 
conversion factor converting hours to seconds must appear twice in the conversion calcula-
tion.

2.1.4 Accuracy and Precision
The terms accuracy and precision refer to the limitations inherent in making measure-

ments. Science is all about investigating nature and to do that we must make measurements. 
Accuracy relates to error, which is the difference between a measured value and the true 
value. The lower the error is in a measurement, the better the accuracy. Error can be caused 
by a number of different factors, including human mistakes, malfunctioning equipment, in-
correctly calibrated instruments, or unknown factors that influence a measurement without 
the knowledge of the experimenter. All measurements contain error because (alas!) perfec-
tion is simply not a thing we have access to in this world.

Precision refers to the resolution or degree of “fine-ness” in a measurement. The limit 
to the precision obtained in a measurement is ultimately dependent on the instrument used 
to make the measurement. If you want greater precision, you must use a more precise in-
strument. The precision of a measurement is indicated by the number of significant digits 
(or significant figures) included when the measurement is written down (see next section).

Figure 2.1 is a photograph of a machinist’s rule and an architect’s scale set side by side. 
Since the marks on the two scales line up consistently, these two scales are equally accurate. 
But the machinist’s rule (on top) is more precise. The architect’s scale is marked in 1/16-inch 
increments, but the machinist’s rule is marked in 1/64-inch increments.

It is important that you are able to distinguish between accuracy and precision. Here 
is an example to illustrate the difference. Let’s say Shana and Marius each buy digital ther-
mometers for their homes. The thermometer Shana buys cost $10 and measures to the 
nearest 1°F. Marius pays $40 and 
gets one that reads to the nearest 
0.1°F. Note that on a day when 
the actual temperature is 95.1°F, 
if the two thermometers are read-
ing accurately Shana’s thermom-
eter reads 95° and Marius’ reads 
95.1°. Thus, Marius’ thermom-
eter is more precise.

Now suppose Shana reads 
the directions and properly in-
stalls the sensor for her new ther-

Figure 2.1. The accuracy of these two scales is the same, but the 
machinist’s rule on the top is more precise.
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mometer in the shade. Marius doesn’t read the directions and mounts his sensor in the 
direct sunlight, which causes a significant error in the measurement for much of the day. 
The result is that Shana has lower-precision, higher-accuracy measurements!

2.1.5 Significant Digits
The precision in any measurement is indicated by the number of significant digits it 

contains. Thus, the number of digits we write in any measurement we deal with in science is 
very important. The number of digits is meaningful because it shows the precision present 
in the instrument used to make the measurement.

Let’s say you are working a computational exercise in a science book. The problem tells 
you that a person drives a distance of 110 miles at an average speed of 55 miles per hour 
and wants you to calculate how long the trip takes. The correct answer to this problem will 
be different from the correct answer to a similar problem with given values of 110.0 miles 
and 55.0 miles per hour. And if the given values are 110.0 miles and 55.00 miles per hour, 
the correct answer is different yet again. Mathematically, of course, all three answers are the 
same. If you drive 110 miles at 55 miles per hour, the trip takes two hours. But scientifi-
cally, the correct answers to these three problems are different: 2.0 hours, 2.00 hours, and 
2.000 hours, respectively. The difference between these cases is in the precision indicated by 
the given data, which are measurements. (Even though this is just a made-up problem in a 
book and not an actual measurement someone made in an experiment, the given data are 
still measurements. There is no way to talk about distances or speeds without talking about 
measurements, even if the measurements are only imaginary or hypothetical.)

When you perform a calculation with physical quantities (measurements), you cannot 
simply write down all the digits shown by your calculator. The precision inherent in the 
measurements used in a computation governs the precision in any result you calculate from 
those measurements. And since the precision in a measurement is indicated by the number 
of significant digits, data and calculations must be written with the correct numbers of sig-
nificant digits. To do this, you need to know how to count significant digits and you must 
use the correct number of significant digits in all your calculations and experimental data.

Correctly counting significant digits involves four different cases:

1.	 Rules for determining how many significant digits there are in a given measurement.

2.	 Rules for writing down the correct number of significant digits in a measurement you 
are making and recording.

3.	 Rules for computations you perform with measurements—multiplication and division.

4.	 Rules for computations you perform with measurements—addition and subtraction.

In this course, we do not use the rules for addition and subtraction, so we leave those for a 
future course (probably chemistry). We now address the first three cases, in order.

Case 1   We begin with the rule for determining how many significant digits there are in a 
given measurement value. The rule is as follows:

The number of significant digits (or figures) in a number is found by counting all the 
digits from left to right beginning with the first nonzero digit on the left. When no 
decimal is present, trailing zeros are not considered significant.
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Let’s apply this rule to several example values to see how it works:

15,679	 This value has five significant digits.

21.0005	 This value has six significant digits.

37,000	 This value has only two significant digits because when there is no decimal trail-
ing zeros are not significant. Notice that the word significant here is a reference 
to the precision of the measurement, which in this case is rounded to the nearest 
thousand. The zeros in this value are certainly important, but they are not signifi-
cant in the context of precision.

0.0105	 This value has three significant digits because we start counting with the first 
nonzero digit on the left.

0.001350	 This value has four significant digits. Trailing zeros count when there is a deci-
mal.

The significant digit rules enable us to tell the difference between two measurements 
such as 13.05 m and 13.0500 m. Mathematically, of course, these values are equivalent. But 
they are different in what they tell us about the process of how the measurements were 
made. The first measurement has four significant digits. The second measurement is more 
precise. It has six significant digits and would come from a more precise instrument.

Now, just in case you are bothered by the zeros at the end of 37,000 that are not signifi-
cant, here is one more way to think about significant digits that may help. The precision in 
a measurement depends on the instrument used to make the measurement. If we express 
the measurement in different units, this should not change the precision. A measurement 
of 37,000 grams is equivalent to 37 kilograms. Whether we express this value in grams or 
kilograms, it still has two significant digits.

Case 2   The second case addresses the rules that apply when you record a measurement 
yourself, rather than reading a measurement someone else has made. When you take mea-
surements yourself, as you do in laboratory experiments, you need to know the rules for 
which digits are significant in the reading you are taking on the measurement instrument. 
The rule for taking measurements depends on whether the instrument you are using is a 
digital instrument or an analog instrument. Here are the rules for these two possibilities:

Rule 1 for digital instruments

For the digital instruments commonly found in high school or undergraduate science 
labs, assume all the digits in the reading are significant, except leading zeros.

Rule 2 for analog instruments

The significant digits in a measurement include all the digits known with certainty, 
plus one digit at the end that must be estimated between the finest marks on the 
scale of your instrument.

The first of these rules is illustrated in Figure 2.2. The reading on the left has leading 
zeros, which do not count as significant. Thus, the first reading has three significant digits. 
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The second reading also has 
three significant digits. The 
third reading has five signifi-
cant digits.

The fourth reading also 
has five significant digits be-
cause with a digital display, 

the only zeros that don’t count are the leading zeros. Trailing zeros are significant with a 
digital instrument. However, when you write this measurement down, you must write it in 
a way that shows those zeros to be significant. The way to do this is by using scientific nota-
tion. Thus, the right-hand value in Figure 2.2 must be written as 4.2000 × 104.

Dealing with digital instruments is actually more involved than the simple rule above 
implies, but the issues involved go beyond what we typically deal with in introductory or 
intermediate science classes. So, simply take your readings and assume that all the digits in 
the reading except leading zeros are significant.

Now let’s look at some examples illustrating the rule for analog instruments. Figure 2.3 
shows a machinist’s rule being used to measure the length in millimeters (mm) of a brass 
block. We know the first two digits of the length with certainty; the block is clearly between 
31 mm and 32 mm long. We have to estimate the third significant digit. The scale on the 
rule is marked in increments of 0.5 mm. Comparing the edge of the block with these marks, 
I would estimate the next digit to be a 6, giving a measurement of 31.6 mm. Others might 
estimate the last digit to be 5 or 7; these small differences in the last digit are unavoidable 
because the last digit is estimated. Whatever you estimate the last digit to be, two digits of 
this measurement are known with certainty, the third digit is estimated, and the measure-
ment has three significant digits.

The photograph in Figure 2.4 shows a measurement in milliliters (mL) being taken 
with a piece of apparatus called a buret—a long glass tube used for measuring liquid vol-

umes. Notice in this figure that when measuring liquid 
volume the surface of the liquid curls up at the edge of 
the cylinder. This curved surface is called a meniscus. The 
liquid measurement must be made at the bottom of the 
meniscus for most liquids, including water. The scale on 
the buret shown is marked in increments of 0.1 mL. This 
means we estimate to the nearest 0.01 mL. To one person, 
the bottom of the meniscus (the black curve) may appear 
to be just below 2.2 mL, so that person would call this 
measurement 2.21 mL. To someone else, it may seem that 
the bottom of the meniscus is right on 2.2, in which case 
that person would call the reading 2.20 mL. Either way, 
the reading has three significant digits and the last digit 
is estimated to be either 1 or 0.

As a third example, Figure 2.5 shows a liquid volume 
measurement being taken with a piece of apparatus called 
a graduated cylinder.  (We use graduated cylinders in an 
experiment we perform later on in this course.) The scale 
on the graduated cylinder shown is marked in incre-
ments of 1 mL. In the photo, the entire meniscus appears 
silvery in color with a black curve at the bottom. For the 

Figure 2.3. Reading the significant digits 
with a machinist’s rule.

Figure 2.2. With digital instruments, all digits are significant except 
leading zeros. Thus, the numbers of significant digits in these readings 
are, from left to right, three, three, five, and five.

0042.0 42.00042.0 42,000
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liquid shown in the figure, we know the first two digits 
of the volume measurement with certainty because the 
reading at the bottom of the meniscus is clearly between 
82 mL and 83 mL. We have to estimate the third digit, 
and I would estimate the black line to be at 40% of the 
distance between 82 and 83, giving a reading of 82.4 mL. 
Someone else might read 82.5 mL, or even 82.6 mL.

It is important for you to keep the significant digits 
rules in mind when you are taking measurements and 
entering data for your lab reports. The data in your lab 
journal and the values you use in your calculations and 
report must correctly reflect the use of the significant 
digits rules as they apply to the actual instruments you 
use to take your measurements. Note also the helpful fact 
that when a measurement is written in scientific nota-
tion, the digits written in the stem (the numerals in front 
of the power of 10) are the significant digits.

Case 3   The third case of rules for significant digits ap-

plies to the calculations (multiplication and division) you 
perform with measurements. The main idea behind the 
rule for multiplying and dividing is that the precision you 
report in your result cannot be higher than the precision 
you have in the measurements to start with. The preci-
sion in a measurement depends on the instrument used 
to make the measurement, nothing else. Multiplying and 
dividing things cannot improve that precision, and thus 
your results can be no more precise than the measure-
ments that go into the calculations. In fact, your result 
can be no more precise than the least precise value used 
in the calculation. The least precise value is, so to speak, 
the “weak link” in the chain, and a chain is no stronger 
than its weakest link.

There are two rules for combining the measured 
values into calculated values, including any unit conver-
sions that must be performed. Here are the two rules for 
using significant digits in our calculations in this course:

Rule 1

Count the significant digits in each of the values you use in a calculation, including 
the conversion factors you use. (Exact conversion factors are not considered.) Deter-
mine how many significant digits there are in the least precise of these values. The 
result of your calculation must have this same number of significant digits.

Rule 1 is the rule for multiplying and dividing, which is what most of our calculations entail. 
(As I mentioned previously, there is another rule for adding and subtracting that you will 
learn when you take chemistry.)

Figure 2.4. Reading the significant digits 
on a buret.

Figure 2.5. Reading the significant digits 
on a graduated cylinder.
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Rule 2

When performing a multi-step calculation, you must keep at least one extra digit dur-
ing intermediate calculations and round off to the final number of significant digits 
you need at the very end. This practice ensures that small round-off errors don’t add 
up during the calculation. This extra digit rule also applies to unit conversions per-
formed as part of the computation.

As I present example problems in the coming chapters, I frequently refer to these rules 
and show how they apply to the example at hand. As you take your quizzes, your instruc-
tor might give you a few weeks to practice and master the correct use of significant digits 
without penalizing you for mistakes. But get this skill down as soon as you can because soon 
you must use significant digits correctly in your computations to obtain the highest scores 
on your quizzes.

2.1.6 Scientific Notation
You have probably studied scientific notation before. However, in this course you must 

master it, including the use of the special key found on scientific calculators for working 
with values in scientific notation. Mastery of scientific notation is important because work-
ing with values in scientific notation is a basic and common occurrence in scientific work. 
We review the basic principles next.

Mathematical Principles   Scientific notation is a way of expressing very large or very 
small numbers without all the zeros, unless the zeroes are significant. This is of enormous 
benefit when one is dealing with a value such as 0.0000000000001 cm (the approximate 
diameter of an atomic nucleus). The basic idea will be clear from a few examples.

Let’s say we have the value 3,750,000. This number is the same as 3.75 million, which 
can be written as 3.75 × 1,000,000. Now, 1,000,000 itself can be written as 106 (which means 
one followed by six zeros), so our original number can be expressed equivalently as 3.75 
× 106. This expression is in scientific notation. The numerals in front, the stem, are always 
written as one digit followed by a decimal and the other digits. The multiplied 10 raised to 
a power has the effect of moving the decimal over as many places as necessary to recreate 
our original number.

As a second example, the current population of earth is about 7,290,000,000, or 7.29 
billion. One billion has nine zeros, so it can be written as 109. So we can express the popula-
tion of earth in scientific notation as 7.29 × 109.

When dealing with extremely small numbers such as 0.000000016, the process is the 
same, except the power on the 10 is negative. The easiest way to think of it is to count how 
many places the decimal in the value must be moved over to get 1.6. To get 1.6, the decimal 
has to be moved to the right eight places, so we write our original value in scientific nota-
tion as 1.6 × 10−8.

Using Scientific Notation with a Scientific Calculator   All scientific calculators have a 
key for entering values in scientific notation. This key is labeled EE  or EXP  on most 



33

Motion

calculators, but others use a different label.3 It is very common for those new to scientific 
calculators to use this key incorrectly and obtain incorrect results. So read carefully as I 
outline the general procedure.

The whole point of using the EE  key is to make keying in the value as quick and error-
free as possible. When using the scientific notation key to enter a value, you do not press the 
×  key, nor do you enter the 10. The scientific calculator is designed to reduce all this key 

entry, and the potential for error, by use of the scientific notation key. You only enter the 
stem of the value and the power on the ten and let the calculator do the rest.

Here’s how. To enter a value, simply enter the digits and decimal in the stem of the 
number, then hit the EE  key, then enter the power on the ten. The value is now entered 
and you may do with it as you wish. As an example, to multiply the value 7.29 × 109 by 25 
using a standard scientific calculator, the sequence of key strokes is as follows:

7.29 EE  9 ×  25 =

Notice that between the stem and the power the only key pushed is the EE  key.
When entering values in scientific notation with negative powers on the 10, the +/−  key 

is used before the power to make the power negative. Thus, to divide 1.6 × 10−8 by 36.17, the 
sequence of key strokes is:

1.6 EE  +/−  8 ÷  36.17 =

Again, neither the “10” nor the “×” sign that comes before it is keyed in. The EE  key 
has these built in.

Students sometimes wonder why it is incorrect to use the 10x  key for scientific nota-
tion. To execute 7.29 × 109 times 25, they are tempted to enter the following:

7.29 ×  10x  9 ×  25 =

The answer is that sometimes this works, and sometimes it doesn’t, and calculator users 
must use key entries that always work. The scientific notation key ( EE ) keeps a value in 
scientific notation all together as one number. That is, when the EE  key is used, then to the 
calculator 7.29 × 109 is not two numbers, it is a single numerical value. But when the ×  key 
is manually inserted, the calculator treats the numbers separated by the ×  key as two sepa-
rate values. This causes the calculator to render an incorrect answer for a calculation such as

3.0×106

1.5×106

The denominator of this expression is exactly half the numerator, so the value of this 
fraction is obviously 2. But when using the 10x  key, the 1.5 and the 106 in the denominator 
are separated and treated as separate values. The calculator then performs the following 
calculation:

3.0×106

1.5
×106

3  One infuriating model uses the extremely unfortunate label x10x  which looks a lot like 10x , a 
different key with a completely different function.
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This comes out to 2,000,000,000,000 (2 × 1012), which is not the same as 2!
The bottom line is that the EE  key, however it may be labeled, is the correct key to use 

for scientific notation.

2.1.7 Problem Solving Methods
Organizing problems on your paper in a reliable and orderly fashion is an essential 

practice. Physics problems can get very complex, and proper solution practices can often 
make the difference between getting most or all of the points for a problem and getting few 
or none. Each time you start a new problem, you must set it up and follow the steps ac-
cording to the outline presented in the box on pages 36 and 37, entitled Universal Problem 
Solving Method. It is very important that you always show all your work. Do not give in to 
the temptation to skips steps or take shortcuts. Develop correct habits for problem solving 
and stick with them!

2.2	 Motion
In this course, we address two types of motion: motion at a constant velocity, when an 

object is not accelerating, and motion with a uniform acceleration. Defining these terms is 
a lot simpler if we stick to motion in one dimension, that is, motion in a straight line. So in 
this course, this is what we will do.

2.2.1 Velocity
When thinking about motion, one of the first 

things we must consider is how fast an object is 
moving. The common word for how fast an ob-
ject is moving is speed. A similar term is the word 
velocity. For the purposes of this course, you may 
treat these two terms as synonyms. The differ-
ence is technical. Technically, the term velocity 
means not only how fast an object is moving, but 
also in what direction. The term speed refers only 
to how fast an object is moving. But since we are 
only going to consider motion in one direction at 
a time, we can use the terms speed and velocity in-
terchangeably.

An important type of motion is motion at a 
constant velocity, like a car with the cruise control on (Figure 2.6). At a constant velocity, 
the velocity of an object is defined as the distance the object travels in a certain period of 
time. Expressed mathematically, the velocity, v, of an object is calculated as

v = d
t

The velocity is calculated by dividing the distance the object travels, d, by the amount 
of time, t, it takes to travel that distance. So, if you walk 5.0 miles in 2.0 hours, your velocity 
is v = (5.0 miles)/(2.0 hours), or 2.5 miles per hour.

Notice that for a given length of time, if an object covers a greater distance it is moving 
with a higher velocity. In other words, the velocity is proportional to the distance traveled 

Figure 2.6. A car traveling with the cruise control 
on is an example of an object moving with 
constant velocity.
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in a certain length of time. When performing calculations using the SI System of units, 
distances are measured in meters and times are measured in seconds. This means the units 
for a velocity are meters per second, or m/s.

The relationship between velocity, distance, and time for motion at a constant velocity 
is shown graphically in Figure 2.7. Travel time is shown on the horizontal axis and distance 
traveled is shown on the vertical axis. The steeper curve4 shows distances and times for an 
object moving at 2 m/s. At a time of one second, the distance traveled is two meters because 
the object is moving at two meters per second (2 m/s). After two seconds at this speed, the 
object has moved four meters: (4 m)/(2 s) = 2 m/s. And after three seconds, the object has 
moved six meters: (6 m)/(3 s) = 2 m/s.

The right-hand curve in Figure 2.7 represents an object traveling at the much slower 
velocity of 0.5 m/s. At this speed, the graph shows that an object travels two meters in four 
seconds, four meters in eight seconds, and so on.

To see this algebraically, look again at the velocity equation above. If we multiply both 
sides of this equation by the time, t, and cancel, we have

d = vt

This is the same equation, just written in a different form. It still applies to objects moving 
at a constant velocity. Written this way, t is the independent variable, d is the dependent 
variable, and v serves as the slope of the line relating d to t. With this form of the velocity 
equation, we can calculate how far an object travels in a given amount of time, assuming the 
object is moving at a constant velocity.

Now we work a couple of example problems, following the problem-solving method 
described on pages 36–37. And remember, all the unit conversion factors you need are 
listed in Appendix A.

4	 Note that when discussing graphs, the lines or curves on the graph are all referred to as curves, 
whether they are curved or straight.

Figure 2.7. A plot of distance versus time for an object moving at constant velocity. Two 
different velocity cases are shown.
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Universal Problem Solving Method
Solid Steps to Reliable Problem Solving

In Introductory Physics, you learn how to use math to solve scientific problems. De-
veloping a sound and reliable method for approaching problems is very important. 
The problem solving method shown below is used in scientific work everywhere. You 
must follow every step closely and show all your work.

1.	 Write down the given quantities at the left side of your paper. Include the variable 
quantities given in the problem statement and the variable you must solve for. 
Make a mental note of the precision in each given quantity.

2.	 For each given quantity that is not already in MKS units, work immediately to the 
right of it to convert the units of measure into MKS units. To help prevent mis-
takes, always use horizontal fraction bars in your units and unit conversion fac-
tors. Write the results of these unit conversions with one extra digit of precision 
over what you need in your final result.

3.	 Write the standard form of the equation you will use to solve the problem.
4.	 If necessary, use algebra to get the variable you are solving for alone on the left 

side of the equation. Never put values into the equation until this step is done.
5.	 Write the equation again with the values in it, using only MKS units, and compute 

the result.
6.	 If you are asked to state the answer in non-MKS units, perform the final unit con-

version now.
7.	 Write the result with the correct number of significant digits and the correct units 

of measure.
8.	 Check your work.
9.	 Make sure your result is reasonable.

Example Problem
If you want a complete and happy life, do ’em just like this!

A car is traveling at 35.0 mph. The driver then accelerates uniformly at a rate of 
0.15 m/s2 for 2 minutes and 10.0 seconds. Determine the final velocity of the car in 
mph.

Step 1	 Write down the given information in a column down the left side of your 
page, using horizontal lines for the fraction bars in the units of measure.

vi = 35.0 mi
hr

a = 0.15 m
s2

t = 2 min 10.0 s
v f = ?
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Step 2	 Perform the needed unit conversions, writing the conversion factors to the 
right of the given quantities you wrote in the previous step.

vi = 35.0 mi
hr

⋅1609 m
mi

⋅ 1 hr
3600 s

=15.6 m
s

a = 0.15 m
s2

t = 2 min 10.0 s =130.0 s
v f = ?

Step 3	 Write the equation you will use in its standard form.

a =
v f −vi

t

Step 4	 Perform the algebra necessary to get the unknown you are solving for alone 
on the left side of the equation.

a =
v f −vi

t
at = v f −vi
v f = vi +at

Step 5	 Using only values in MKS units, insert the values and compute the result.

v f = vi +at =15.6 m
s
+0.15 m

s2 ⋅130.0 s = 35.1 m
s

Step 6	 Convert to non-MKS units, if required in the problem.

v f = 35.1 m
s
⋅ 1 mi
1609 m

⋅3600 s
1 hr

= 78.5 mi
hr

Step 7	 Write the result with correct significant digits and units of measure.

v f = 79 mph

Step 8	 Check over your work, looking for errors.

Step 9	 Make sure your result is reasonable. First, check to see if your result makes 
sense. The example above is about an accelerating car, so the final velocity 
we calculate should be a velocity a car can have. A result like 14,000 mph is 
obviously incorrect. (And remember that nothing can travel faster than the 
speed of light, so make sure your results are reasonable in this way as well.) 
Second, if possible, estimate the answer from the given information and 
compare your estimate to your result. In step 6 above, we see that 3600/1609 
is about 2, and 2 ∙35.1 is about 70. Thus our result of 79 mph makes sense.

(Optional Step 10: Revel in the satisfaction of knowing that once you get this down 
you can work physics problems perfectly nearly every time!)
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 Example 2.6

Sound travels 1,120 ft/s in air. How much time does it take to hear the crack of a gun fired 
1,695.5 m away?

First, write down the given information and perform the required unit conversions so that 
all given values are in MKS units. Check to see how many significant digits your result must 
have and do the unit conversions with one extra significant digit. The given speed of sound 
has three significant digits, so we perform our unit conversions with four digits.

v =1120 ft
s
⋅0.3048 m

ft
= 341.4 m

s
d =1695.5 m
t = ?

Next, write the appropriate equation to use.

v = d
t

Perform any necessary algebra, insert the values in MKS units, and compute the result.

v = d
t

t = d
v
= 1695.5 m

341.4 m
s

= 4.966 s

Next, round the result so that it has the correct number of significant digits. In the velocity 
unit conversion and in the calculated result, I used four significant digits. The given velocity 
has three significant digits and the given distance has five significant digits. Thus, our result 
must be reported with three significant digits, but all intermediate calculations must use 
one extra digit. This is why I used four digits. But now we are finished and our result must 
be rounded to three significant digits because the least precise measurement in the problem 
has three significant digits. Rounding our result accordingly, we have

t = 4.97 s

The final step is to check the result for reasonableness. The result should be roughly the 
same as 1500/300 or 2000/400, both of which equal 5. Thus, our result makes sense.

2.2.2 Acceleration
An object’s velocity is a measure of how fast it is going; it is not a measure of whether 

its velocity is changing. The quantity we use to measure if a velocity is changing, and if so, 
how fast it is changing, is the acceleration. If an object’s velocity is changing, the object is 
accelerating, and the value of the acceleration is the rate at which the velocity is changing. 
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The equation we use to calculate uniform acceleration in terms of an initial velocity vi and 
a final velocity vf is

a =
v f −vi

t

where a is the acceleration (m/s2), t is the time spent accelerating (s), and vi and vf are the 
initial and final velocities, respectively, (m/s).

Did you notice that the MKS units for acceleration are meters per second squared 
(m/s2)? These units often drive students crazy, and we need to pause here and discuss what 
this means so you can sleep peacefully tonight. I wrote just above that the acceleration is 
the rate at which the velocity is changing. The acceleration simply means that the velocity is 
increasing by so many meters per second, per second. Now, “per” indicates a fraction, and 
if a velocity is changing so many meters per second, per second, we write these units in a 
fraction this way and simplify the expression:

m
s
s
=

m
s
s
1

= m
s
⋅1
s
= m

s2

Because the acceleration equation results in negative accelerations when the initial ve-
locity is greater than the final velocity, you can see that a negative value for acceleration 
means the object is slowing down. In future physics courses, you may learn more sophis-
ticated interpretations for what a negative acceleration means, but in this course you are 
safe associating negative accelerations with decreasing velocity. In common speech, people 
sometimes use the term “deceleration” when an object is slowing down, but mathematically 
we just say the acceleration is negative.

Before we work through some examples, let’s look at a graphical depiction of uniform 
acceleration the same way we did with velocity. Figure 2.8 shows two different acceleration 
curves, representing two different acceleration values. For the curve on the right, after 1 s 
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Figure 2.8. A plot of velocity versus time for an object accelerating uniformly. Two different 
acceleration cases are shown.
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the object is going 1 m/s. Aft er 2 s, the object is going 2 m/s. Aft er 12 s, the object is going 
12 m/s. You can take the velocity that corresponds to any length of time (by fi nding where 
their lines intersect on the curve) and calculate the acceleration by dividing the velocity by 
the time to get a = 1 m/s2. Th e other curve has a higher acceleration, 4 m/s2. An acceleration 
of 4 m/s2 means the velocity is increasing by 4 m/s every second. Accordingly, aft er 2 s the 
velocity is 8 m/s, and aft er 3 s, the velocity is 12 m/s. No matter what point you select on 
that curve, v/t = 4 m/s2.

We must be very careful to distinguish between velocity (m/s) and acceleration (m/s2). 
Acceleration is a measure of how fast an object’s velocity is changing. To see the diff erence, 
note that an object can be at rest (v = 0) and accelerating at the same instant.

Now, although you may not see this at fi rst, it is important for you to think this through 
and understand how this counter-intuitive situation can come about. Here are two examples. 

Th e instant an object starts from rest, such as when 
the driver hits the gas while sitting at a traffi  c light, the 
object is simultaneously at rest and accelerating. Th is 
is because if an object at rest is to ever begin moving, 
its velocity must change from zero to something else. 
In other words, the object must accelerate. Of course, 
this situation only holds for an instant; the velocity in-
stantly begins changing and does not stay zero.

Perhaps my point will be easier to see with this 
second example. As depicted in Figure 2.9, when 
a ball is thrown straight up and reaches its highest 
point, it stops for an instant as it starts to come back 
down. At its highest point, the ball is simultaneously 
at rest and accelerating due to the force of gravity pull-
ing it down. As before, this situation only holds for a 
single instant.

Th e point of these two examples is to help you 
understand the diff erence between the two variables 
we are discussing, velocity and acceleration. If an 
object is moving at all, then it has a velocity that is 
not zero. Th e object may or may not be accelerating. 
But acceleration is about whether the velocity itself is 

changing. If the velocity is constant, then the acceleration is zero. If the object is speeding 
up or slowing down, then the acceleration is not zero.

And now for another example problem, this time using the acceleration equation.

 Example 2.7

A truck is moving with a velocity of 42 mph (miles per hour) when the driver hits the brakes 
and brings the truck to a stop. Th e total time required to stop the truck is 8.75 s. Determine 
the acceleration of the truck, assuming the acceleration is uniform.

Begin by writing the givens and performing the unit conversions.

Figure 2.9. A rising and falling ball helps 
illustrate the diff erence between velocity 
and acceleration.
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vi = 42 mi
hr

⋅1609 m
mi

⋅ 1 hr
3600 s

=18.8 m
s

v f = 0
t = 8.75 s
a = ?

Now write the equation and complete the problem.

a =
v f −vi

t
=

0−18.8 m
s

8.75 s
= −2.15 m

s2

The initial velocity has two significant digits, so I did the calculations with three significant 
digits until the end. Now we round off to two digits giving

a = −2.2 m
s2

If you keep all the digits in your calculator throughout the calculation and round to two 
digits at the end, you have −2.1 m/s2. This answer is fine, too. Remember, the last digit of 
a measurement or computation always contains some uncertainty, so it is reasonable to 
expect small variations in the last significant digit. A check of our work shows the result 
should be about –20/10, which is –2. Thus the result makes sense.

One more point on this example: Notice that the calculated acceleration value came out 
negative. This was because the final velocity was lower than the initial velocity. Thus we see 
that a negative acceleration means the vehicle is slowing down.

If you haven’t yet read the example problem in the yellow Universal Problem Solving 
Method box, you should read it now to see a slightly more difficult example using this same 
equation.

2.3	 Planetary Motion and the Copernican Revolution

2.3.1 Science History and the Science of Motion
People have been fascinated with the heavens since ancient times. God’s people love to 

quote Psalm 19: 

The heavens declare the glory of God, and the sky above proclaims his handiwork.
Day to day pours out speech, and night to night reveals knowledge.

The psalmist tells us that the glory of the stars and other heavenly bodies reveals the glory 
of their creator, our God. This means they convey truth to us, the truth we call General 
Revelation.

The study of motion has always been associated with the motion of the heavenly bod-
ies we see in the sky, so it is particularly fitting in this chapter on motion for us to review 
the history of views about the solar system and the rest of the universe, referred to as “the 
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heavens” by those in ancient times. As we will see, the particular episode known as the Co-
pernican Revolution was a pivotal moment in that history and was the setting for the emer-
gence of our contemporary understanding of scientific epistemology—what knowledge is 
and how we know what we know.

As you recall, Chapter 1 addresses the Cycle of Scientific Enterprise and examines the 
way science works. From that discussion you know that science is an ongoing process of 
modeling nature—at least that is the way we understand science now. We now understand 
that scientists use theories as models of the way nature works, and over time theories change 
and evolve as scientists learn more. Sometimes scientists find that a theory is so far off the 
mark that they have to toss it out completely and replace it with a different one.

The present general understanding among scientists that science is a process of model-
ling nature took hold around the beginning of the 20th century. The ideas that led to this 
understanding began to emerge at the time of the Copernican Revolution in the 16th and 
17th centuries. But since natural philosophy was then entering new territory, there was a 
period of difficult struggle that involved both theologians and philosophers.

There are a lot of misconceptions about what happened at that time. The conflict in 
Galileo’s day is often regarded as a fight between faith and science, and these misconcep-
tions have led many people in today’s world to the position that faith is dead and only sci-
ence gives us real knowledge. But that depiction is not even close to what really happened 
and that belief about science is not even close to the truth. The real issue with Galileo was 
about epistemology. The so-called “faith versus science” debate rages today as much as ever, 
so it is worth spending some time to understand that crucial period in scientific history.

2.3.2 Aristotle
The study of astronomy and astrology dates back to the ancient Babylonians, but we 

pick up the story with the ancient Greeks and the Greek philosopher Aristotle in the 4th-
century BC (Figure 2.10). Aristotle was a highly influential philosopher who wrote a lot 
about philosophy, physics, biology, and other fields of learning. Back then, science was 
called natural philosophy and there was really no distinction between scientists and phi-
losophers.

That time was also many centuries before experiments became part of scientific re-
search. Natural philosophy did involve making observations 
about the world, but the conclusions reached by ancient phi-
losophers like Aristotle were based simply on observation 
and philosophical thought. It was still about 2,000 years be-
fore natural philosophers realized that the way things appear 
to our ordinary senses might not be the way they actually are 
and that to understand more about the world requires scien-
tific experiments. For example, if you just walk outside and 
quietly look around you notice that the earth does not appear 
to be in motion; it feels solid and at rest. The sun, planets, and 
stars appear to move across the sky each day. In fact, watching 
a sunrise gives the distinct impression that the sun is moving 
up and then across the sky. Today, we understand things dif-
ferently, but that is the result of the revolution we are about 
to explore and the experimental science that emerged at that 
time.Figure 2.10. Greek philosopher 

Aristotle (384–322 BC).



43

Motion

Aristotle’s ideas were grounded in the concept of telos—a Greek term meaning pur-
pose, goal, or end. Aristotle believed that each thing that exists has its own telos, an idea we 
can heartily embrace today as Christians who believe that God made the world with specific 
purposes in mind.

Aristotle observed the serene beauty of the stars, the planets, the sun, and moon as 
they appear majestically to rotate around the earth day after day. He also noticed that noth-
ing in the heavens ever seems to change. Other than the motions of the heavenly bodies, 
everything in the heavens seems to be pure and eternal. On earth, of course, Aristotle was 
surrounded by change: decay, corruption, birth, and death are all around. Animals and 
plants live and die, forests grow and burn, rivers flow and flood, storms come and go. These 
observations led Aristotle to conclude that change and corruption occur only on the earth. 
He wrote that imperfection and change of any kind occur only on the earth, while the heav-
ens are pure and unchanging. Aristotle taught that the heavenly bodies—planets, stars, sun, 
and moon—are eternal and perfect. Further, he said that their motions must be in perfect 
circles since the circle is the purest and most perfect geometric shape. He conceived of the 
sun, moon, and planets as inhabiting celestial spheres, centered on the earth, one inside the 
other—an exquisite geocentric (earth-centered) system.

Aristotle was a tremendous moral philosopher whose ideas still have a profound influ-
ence on us today. Back in ancient times, he was regarded so highly that questioning his ideas 
was virtually unthinkable. Thus, his views about the heavenly motions became the basis for 
all further work on understanding the motions of the heavenly bodies.

2.3.3 Ptolemy
In the second century AD, the famous Alexandrian 

astronomer Ptolemy (Figure 2.11) worked out a detailed 
mathematical system based on Aristotle’s ideas. (By the 
way, the “P” in Ptolemy is silent.) As with all ancient as-
tronomers, Ptolemy’s goal was to be able to make predic-
tions about the movements of the planets and stars, along 
with other astronomical events such as eclipses, because 
these events were widely used as omens signifying impor-
tant events on earth.

Ptolemy started with Aristotle’s basic ideas and devel-
oped a complex mathematical system—a model—that was 
quite effective in making the desired predictions. There 
were other astronomers around that time who developed 
different systems, but Ptolemy’s system became the most 
widely accepted understanding of the heavens for over a 
thousand years.

2.3.4 The Ptolemaic Model
The basic structure of Ptolemy’s geocentric model of the heavens is depicted in Figure 

2.12. As with Aristotle, there are seven heavenly bodies, each inhabiting a sphere centered 
on the earth. Each of the heavenly bodies is also itself a perfect sphere.

The contents of the spheres are summarized in Table 2.3. The first seven spheres con-
tain the five planets (not including the earth), the sun, and the moon. Sphere 8 contains 
the so-called Firmament, the fixed layer of stars. The stars do not move relative to each 

Figure 2.11. Alexandrian astronomer 
Ptolemy (c. AD 100–170).
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other; their positions are fixed 
and they rotate as a body in the 
eighth sphere each day. Within 
the firmament, the stars are ar-
ranged according to the zodiac, 
a belt of twelve constellations 
around the earth. The term zo-
diac derives from the Latin and 
Greek terms meaning “circle 
of animals,” and is so named 
because many of the constel-
lations in the zodiac represent 
animals.

The ninth sphere contains 
the Primum Mobile, which is 
Latin for “prime mover” (or 
“first mover”). The Primum 
Mobile is the sphere set into 
motion by God or the gods. 
As the Primum Mobile turns, it 
pulls all the other spheres with 
it, making them rotate as well. 
Outside the ninth sphere is the 

so-called Empyrean, the dwelling place of God or the gods. 
Figure 2.12 shows the basic structure of Ptolemy’s model, but there is a great deal more 

to the model than shown there. This is because all seven of the heavenly bodies appear 
to move around in the nighttime sky against the background of the fixed stars. If all the 
heavenly bodies simply moved in their spheres around the earth together once each day,  
there would be no way to account for why the planets’ positions change relative to the stars. 

Figure 2.12. The Ptolemaic model of the heavens.

Empyrean

Earth

Moon

Mercury

Venus

Sun

Mars

Jupiter

Saturn

Primum Mobile
Firmament

Sphere 1 Moon

Sphere 2 Mercury

Sphere 3 Venus

Sphere 4 Sun

Sphere 5 Mars

Sphere 6 Jupiter

Sphere 7 Saturn

Sphere 8 The Firmament. This region consists of the stars arranged in their constellations 
according to the zodiac.

Sphere 9 The Primum Mobile. This Latin name means “first mover.” This sphere rotates around 
the earth every 24 hours and drags all the other spheres with it, making them all 
move.

Beyond The Empyrean. This is the region beyond the spheres. The Empyrean is the abode 
of God, or the gods.

Table 2.3. Contents of the spheres in the Ptolemaic model.
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Ptolemy accounted for the changes by a system of 
epicycles. An epicycle is a circular planetary orbit 
with its center moving in a separate circular path, as 
depicted in Figure 2.13. As the center of an epicycle 
moves along its path in the sphere, the planet in the 
epicycle rotates about the center of the epicycle, as 
if the epicycle were a wheel rolling around a path 
centered on the earth.

To help you understand why epicycles are nec-
essary in Ptolemy’s model, we discuss them in more 
detail in the next section. A planet moving in an epi-
cycle moves in a path similar to a person riding in 
a “tea cup ride” at an amusement park, like the one 
picture in Figure 2.14. To account for the complex 
motions of the heavenly bodies, Ptolemy’s model 
contained some 80 different epicycles. Some of 
the planets were located in a epicycle riding on the 
rim of another epicycle, which in turn 
moved in the sphere around the earth. 
Ptolemy’s system was mathematically 
very complex, but its genius was that it 
worked pretty well! The main features 
of Ptolemy’s model are summarized in 
the box below.

Among the different astronomers 
of the ancient world there were those 
who held to variations on this basic 
model. For example, some astronomers 
reckoned that Mercury and Venus or-
bited the sun while the other heavenly 
bodies orbited the earth. But the basic 
Ptolemaic model is as described in the 
box.

Figure 2.14. The people in the cups spin in a circle while the 
cup moves in a larger circle,  motion like that of a planet 
moving on an epicycle.

Figure 2.13. A planet moving in a path 
defined by an epicycle around the earth.

epicycle

earth

planet

planetary sphere

The Main Principles in Ptolemy’s Celestial Model
1.	 There are seven heavenly bodies.
2.	 All the heavenly bodies move in circular orbital regions called spheres. In the 

model, there are nine spheres plus the region beyond the spheres, with contents 
as listed in Table 2.3.

3.	 All the heavenly bodies are perfectly spherical.
4.	 All the spheres are centered on the earth, so this system is a geocentric system.
5.	 Corruption and change only exist on earth. All other places in the universe, in-

cluding all the heavenly bodies and stars, are perfect and unchanging.
6.	 All the spheres containing the heavenly bodies and all the stars in the Firmament 

rotate completely around the earth every 24 hours.
7.	 Epicycles are used to explain the motion of the planets relative to the stars.
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2.3.5 The Ancient Understanding of the Heavens
We soon address the new ideas that began unfolding when Nicolaus Copernicus intro-

duced his new heliocentric (sun-centered) model of the heavens. But before pressing on, let’s 
pause to consider a couple of things about the way the motion of the planets in the night sky 
appears to observers on earth. This will make it easier to understand why Ptolemy’s system 
became so widely accepted.

Stationary Earth   First, as I mention above, the earth does not seem to be moving. To you 
and I, who grew up in a time when everyone knows that the earth and other planets orbit 
the sun, it seems obvious that day and night are caused by the earth’s rotation on its axis. We 
have heard about this all our lives. But stop and consider that if all we had to go on was our 
simple observations, it does appear that everything is orbiting around the earth while the 
earth sits still: the sun and moon rise each day, track across the sky, and set, and the planets 
and stars all do the same thing. Also, it doesn’t feel at all like earth is rotating. We all know 
that anytime we spin in a circle, like people on a merry-go-round, we have to hold on to 
keep from falling off. We also feel the wind in our hair. Again, if we have something with us 
on the merry-go-round that is tall and flexible, such as a sapling, it does not remain vertical 

when it is moving in a circular fashion like this. Instead, 
it bends over because of the acceleration pulling it in its 
circular motion.

Now, the ancients knew about the large size of the 
earth—the Greek mathematician and geographer Era-
tosthenes (Figure 2.15) made a very accurate estimate of 
the earth’s circumference—a bit under 25,000 miles—as 
far back as 240 BC. If a sphere that size spins in a circle 
once a day, the people on its surface move very fast (over 
1,000 miles per hour on the equator). For this to be the 
case, it seemed that we would be hanging on for dear 
life! The trees would be laying down and we would con-
stantly feel winds that make a hurricane seem like a calm 
summer day!

For all these reasons, it did not seem reasonable to 
believe that the apparent motion of the heavenly bodies 
across the sky every day was due to the earth’s rotation. 
These arguments seemed obvious to nearly everyone be-
fore 1500, and to everyone except a few cutting-edge as-
tronomers right up to the end of the 17th century. Only 
a crazy person imagined that the earth spins, and people 
used these arguments all the way up to the time of Gali-

leo to prove that the earth was not orbiting the sun and spinning around once a day. Back 
then, these were persuasive arguments.

Forward and Retrograde Motion   The second item to consider here has to do with the 
apparent motion of the planets in the sky against the background of the stars. If you go out 
and look at, say, Mars each night and make a note of its location against the stars, you see 
that it is in a slightly different place each night. The planet gradually works its way along in 
a pathway against the starry background night after night. If you track the planet for sev-

Figure 2.15. Greek mathematician and 
geographer Eratosthenes (c. 276–194 
BC).
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eral months or a year, it 
moves quite far. As 
mentioned above, Ptol-
emy used epicycles to 
account for this for-
ward motion of planets 
against the background 
of fixed stars.

Going back to 
watching Mars, if you 
follow the planet’s 
progress long enough, 
you see that there are 
periods of time lasting 
several weeks when the 
nightly progress of the 
planet reverses course. 
Mars appears to be 
backing up! This appar-
ent backing up is called 
retrograde motion. 
Ptolemy used epicycles 
to account for this, too.

Figure 2.16 is a diagram showing how epicycles are used in the geocentric system to 
account for the planetary motions—both forward and retrograde—against the background 
of the fixed stars. Mars is shown in red moving on an epicycle, while the center of the 
epicycle moves around 
the earth. The dashed 
lines are the lines of 
sight from earth to 
Mars, and the letters 
and numbers outside 
the firmament show 
the locations where 
Mars appears among 
the stars at different 
times.

The lower right 
part of the diagram 
shows Mars in three 
locations (labeled 1, 2, 
and 3) over the course 
of a few weeks. Com-
pared to the back-
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Figure 2.16. Using epicycles to explain the forward and retrograde motion of 
heavenly bodies against the background of fixed stars.
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Figure 2.17. Explanation of forward and retrograde motion in the Copernican 
system.
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ground of fixed stars, Mars exhibits forward motion during a sequence of nighttime ob-
servations.

The upper right part of the figure shows Mars’ locations during a different sequence of 
observations (a, b, and c) some months later. Mars is now on the other side of its epicycle. 
The center of the epicycle continues to move in the same direction in its sphere around 
earth. But since Mars is on the near side of its epicycle, the sequence of observations of its 
location against the starry background—a, b, and c—maps along the starry background in 
the opposite direction. This apparent motion of Mars in the opposite direction is retrograde 
motion.

While we are on the subject, we may as well look at how forward and retrograde mo-
tion are explained in a heliocentric system—a system in which the planets orbit the sun. The 
system introduced by Copernicus is a heliocentric system. Assuming that the earth moves 
faster in its orbit than Mars (which is correct), the explanation is straightforward. As shown 
in the upper part of Figure 2.17, when the earth and Mars are on opposite side of their or-
bits, the observations of Mars’ location against the stars exhibit forward motion. But when 
the earth and Mars are on the same side of the sun, as in the center-right part of the figure, 
the earth’s greater velocity makes Mars’ position against the stars exhibit retrograde motion.

To summarize, none of the planets actually reverses course in its orbit, and neither the 
geocentric nor heliocentric models depict planets as reversing direction. But depending 
on the system, the presence of epicycles and the relative locations of earth and a planet can 
combine to produce the appearance of forward or retrograde motion of the planet against 
the fixed background of the stars.

2.3.6 The Ptolemaic Model and Theology
We soon continue our history of the science of planetary motion by reviewing the 

momentous events of the 16th and 17th centuries. Between Ptolemy and Copernicus were 
1,300 years of theology and philosophy. During this long period of history, a strong tradi-
tion emerged among many theologians that the Ptolemaic model of the heavens aligned 
very well with certain passages in the Bible. This circumstance led theologians in this tradi-
tion to assume that such passages were to be interpreted as literal descriptions of the mo-
tions of the heavenly bodies. Here are a few examples of passages that seem to describe the 
earth as motionless, with the sun and stars going around the earth:

He set the earth on its foundations, so that it should never be moved (Psalm 104:5).

He made the moon to mark the seasons; the sun knows its time for setting (Psalm 104:19).

[The sun’s] rising is from the end of the heavens, and its circuit to the end of them (Psalm 
19:6).

The sun rises and the sun goes down, and hastens to the place where it rises (Ecclesiastes 
1:5).

Additionally, other features in the Ptolemaic model (derived from Aristotle) seemed to 
line up with biblical symbolism. For example:

•	 Seven is the biblical number symbolizing perfection, so it made sense that God’s cre-
ation contains seven heavenly bodies.

•	 Circles are the most perfect shape, regarded as divine from the times of the ancient 
Greeks, so the spherical bodies inhabiting spheres in which they move seemed to re-
flect the perfection of their Creator.
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•	 Corruption was thought to exist only on earth, and it seemed this was obviously be-
cause of the curse that resulted from the Fall of man.

The result of such teaching was that many theologians assumed that the biblical pas-
sages and doctrines described above, along with the Ptolemaic model of the heavens, were 
literal descriptions of the true nature of reality. To these theologians, anyone who had dif-
ferent ideas about the heavens—such as, for example, the idea that the earth moved and 
orbited the sun—should be censored and prevented from spreading teachings they felt were 
unbiblical.

Although widespread, this tradition of associating the Ptolemaic model with the Bible 
was by no means universal. Many theologians took a completely different position, includ-
ing the great theologian and philosopher Augustine, a bishop in northern Africa in the 4th 
and 5th centuries AD. An insightful and relevant passage from Augustine is found in his 
book On the Literal Meaning of Genesis:

Usually, even a non-Christian knows something about the earth, the heavens, and 
the other elements of this world, about the motion and orbit of the stars and even 
their sizes and relative positions, about the predictable eclipses of the sun and 
moon, the cycles of the years and the seasons, about the kinds of animals, shrubs, 
stones, and so forth, and this knowledge he holds to as being certain from reason 
and experience. Now it is a disgraceful and dangerous thing for an infidel to hear a 
Christian, presumably giving the meaning of Holy Scripture, talking nonsense on 
these topics, and we should take all means to prevent such an embarrassing situa-
tion, in which people show up vast ignorance in a Christian and laugh it to scorn. 
The shame is not so much that an ignorant individual is derided, but that people 
outside the household of faith think our sacred writers held such opinions, and, to 
the great loss of those for whose salvation we toil, the writers of our Scripture are 
criticized and rejected as unlearned men.

As we open the curtain now on the rest of our story, it is key to remember that many 
church theologians were strong supporters of those engaged in natural philosophy. The Ro-
man Catholic Church—which figures prominently in these events—had a long tradition of 
supporting intellectual inquiry, including natural philosophy, and many of the individual 
theologians in the church were admirers of the scientists involved in these events.

2.3.7 Copernicus and Tycho
Nicolaus Copernicus (Figure 2.18), a Polish astronomer, first proposed a detailed, 

mathematical, heliocentric model of the heavens, with the earth rotating on its axis, all the 
planets moving in circular orbits around the sun, and the moon orbiting the earth.

Copernicus’ system was about as accurate—and about as complex—as the Ptolemaic 
system. Copernicus’ model still used circular orbits and because of this he still had to use 
epicycles to make the model accurate. Still, the model is an arrangement that is a lot closer 
to today’s understanding than the Ptolemaic model is. 

As mentioned in the accompanying box, Copernicus dedicated his famous work On 
the Revolutions of the Heavenly Spheres to Pope Paul III. This dedication indicates that the 
Roman Catholic Church itself was not opposed to Copernicus’ ideas. Nevertheless, Coper-
nicus knew there were scholars in the Church who were strongly opposed to the suggestion 
that the earth moved. Being a sensitive and godly man, he didn’t want to cause trouble so he 
published his work privately to his close friends in 1514. Just before Copernicus’ death in 
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1543, his student and 
admirer, mathemati-
cian and astronomer 
Georg Joachim Rhe-
ticus, persuaded Co-
pernicus to publish the 
work. Rheticus deliv-
ered the manuscript 
to the printer and 
brought proofs back to 
Copernicus to review. 
Rheticus was not con-
tinuously present with 
the printer, and during 
his absence a theolo-
gian named Andreas 
Osiander added an 
unsigned “note to the 
reader” to the front of 
Copernicus’ book stat-

ing that the heliocentric ideas were hypotheses (although theory is the better term, since we 
are talking about a model) that were useful for the purpose of performing computations and 
not descriptions of actual reality. Because of this note, people generally thought that it ex-
pressed Copernicus’ own viewpoint. However, Rheticus was outraged by the addition and 
marked it out with a red crayon in the copies he sent to people. Copernicus did not live to 
see the final printed version of his book, but Rheticus’ reaction to Osiander’s note suggests 
that Copernicus regarded his model as more than merely an imaginary convenience that 
made computations easier.

Nicolaus Copernicus gave us a beautiful description of our Creator, one that is often 
quoted. In the preface to his book On the Revolutions of Heavenly Spheres he dedicated 
the book to Pope Paul III. Copernicus wrote:

“I can reckon easily enough, Most Holy Father, that as soon as certain people learn 
that in these books of mine which I have written about the revolutions of the spheres 
of the world I attribute certain motions to the terrestrial globe, they will immediately 
shout to have me and my opinions hooted off the stage.”

Copernicus went on to review the shortcomings of the work of other astronomers, 
and then justified his own work: 

“Accordingly, when I had meditated upon this lack of certitude in the traditional 
mathematics concerning the composition of movements of the spheres of the world, 
I began to be annoyed that the philosophers, who in other respects had made a very 
careful scrutiny of the least details of the world, had discovered no sure scheme for 
the movements of the machinery of the world, which has been built for us by the Best 
and Most Orderly Workman of all.”

—from Nicolaus Copernicus, On the Revolutions of Heavenly Spheres (1543)

Figure 2.18. Polish astronomer Nicolaus Copernicus (1473–1543).
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Tycho Brahe (Figure 2.19), was a Danish nobleman and 
astronomer. Tycho5 built a magnificent observatory called 
the Uraniborg on an island Denmark ruled at the time. This 
observatory is depicted in Figure 2.20.

Tycho was a passionate and hotheaded guy, as evi-
denced by the fact he had the bridge of his nose cut off in a 
duel. (You can see his prosthesis in Figure 2.19 if you look 
closely.) Even though Tycho’s Uraniborg must have been 
the most palatial observatory in the world, he had a falling 
out with the new King of Denmark and decided to leave. In 
1597, Tycho moved to Prague in Bohemia (the modern-day 
Czech Republic) and became Imperial Mathematician for 
Rudolph II, King of Bohemia and Holy Roman Emperor 
there. Tycho spent his life cataloging astronomical data for 
over 1,000 stars (with cleverly contrived instruments, but 
only a primitive telescope). His work was published much 
later (1627) by Johannes Kepler in a new star catalog that 
identified the positions of these stars with unprecedented 
accuracy.

Tycho witnessed and recorded two astronomical events that became historically very 
important. First, in 1563 he observed a conjunction between Jupiter and Saturn. A conjunc-
tion, illustrated in Figure 2.21, occurs when two planets are in a straight line with the earth 
so that from earth they appear to be in the same place in the sky. Tycho predicted the date 
for this conjunction using Copernicus’ new heliocentric model. The prediction was close 
(this is good) but was still off by a few days (not so good). The error indicated that there 
was still something lacking in Copernicus’ model. (There was: the orbits are not circular 
as Copernicus assumed.) Second, in 1572 Tycho observed what he called a “nova” (which 
is Latin for new; today we would call it a supernova) and proved that it was a new star. 
This discovery rocked the Renaissance 
world because it was strong evidence 
that the stars are not perfect and un-
changing as Aristotle had thought and 
as the Ptolemaic model of the heavens 
declared.

Although familiar with Coperni-
cus’ model, Tycho was a proud advo-
cate of his own model, in which the 
sun and moon orbit the earth and the 
other planets orbit the sun, which in 
turn orbits the earth. His model did 
have the advantage of maintaining a 
stationary earth, which allowed Tycho 
to avoid controversy with those who 

5	 I know it is appropriate to refer to historical figures by their last names, but most references in the 
literature refer to Tycho; historians rarely call him Brahe. I love the name Tycho, so I also call him 
that.

Figure 2.19. Danish astronomer 
Tycho Brahe (1546–1601).

Figure 2.20. Tycho’s Danish observatory, the Uraniborg.



52

Chapter 2

insisted that the Bible taught that the earth did not 
move.

Tycho also had a good technical reason for re-
jecting Copernicus’ model. If the earth moves in an 
orbit, then earth’s location is different in the summer 
from its location in the winter. This means the relative 
positions of the stars should be slightly different at 
these different times of the year, an effect called stel-
lar parallax. (As an analogy, imagine yourself looking 
at the trees in a forest. If you take a few steps to one 
side, the positions of the trees relative to each other 

in your new location are different.) At that time, no stellar parallax had been observed, and 
Tycho knew that this meant that either the earth was stationary or the stars were incredibly 
far away. Copernicus had accepted the great distance of the stars but Tycho did not, and  
famously wondered, “What purpose would all that emptiness serve?” In fact, stellar parallax 
was not observed until 1838, when telescopes were finally up to the task. The discovery of 
stellar parallax in 1838 was the first actual evidence that Copernicus was right. It helps to 
keep this in mind when we get to the controversy surrounding Galileo.

2.3.8 Kepler and the Laws of Planetary Motion
Johannes Kepler (Figure 2.22), a German astronomer and mathematician, was invited 

in 1600 to join the research staff at Tycho’s observatory in Prague and became the Imperial 
Mathematician there the following year, after Tycho’s death. 
Kepler had access to Tycho’s massive body of research data 
and used it to develop his famous three laws of planetary 
motion, the first two of which were published in 1609. He 
discovered the third law a few years later and published it in 
1619. Today, Kepler’s laws of planetary motion remain the 
currently accepted model describing our solar system.

Kepler was a godly man and took his faith very seri-
ously, even though he was caught in the middle during the 
Counter-Reformation, a time of serious disagreement be-
tween Roman Catholics and Protestants. Kepler was also an 
amazing scientist who believed that he had been called to 
glorify God through his discoveries. In addition to his as-
tronomical discoveries, he made important discoveries in 
geometry and optics, he figured out some of the major prin-
ciples of gravity later synthesized by Isaac Newton, and he 
was the first to hypothesize that the sun exerted a force on 
the earth.

I want to show you the three beautiful laws of planetary 
motion Kepler discovered. For your memory work, you may 

focus on remembering only the first one. But I want you to see some things about the way 
the solar system is designed, and the One who designed it, so I am going to describe all 
three of Kepler’s Laws.

Figure 2.22. German astronomer 
and mathematician Johannes 
Kepler (1571–1630).

Figure 2.21. The alignment of three planets, 
called a conjunction.
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Kepler’s first law of planetary motion is as follows:

First Law	 Each of the planetary orbits is an ellipse, with the sun at one focus.

A planet in an elliptical orbit is depicted in Figure 2.23. You may not have studied ellips-
es yet in math, so I will describe them. An ellipse is a geometric figure shaped like this: . 
An ellipse is similar to a circle, except that instead of 
having a single point locating the center, an ellipse 
has two points on either side of the center called foci 
that define its shape. (The term foci is plural, and 
pronounced FOH-sigh; the singular is focus.) Out 
in space, each planet travels on a path defined by a 
geometrical ellipse. The planetary orbits all have one 
focus located at the same place in space and this is 
where the sun is. Think how incredible it is that Ke-
pler figured this out! He was a monster mathemati-
cian (no calculator!) and an extremely careful scien-
tist, and the fact that scientists had understood the 
orbits to be circular for two thousand years did not 
get in his way. To me, this is simply amazing.

Kepler’s second law is not hard to understand. It is in the next box.

Second Law	 A line drawn from the sun to any planet sweeps out a region in 
space that has equal area for any equivalent length of time. 

The second law is 
depicted in Figure 2.24. 
The idea is that for a 
given period of time, 
say, a month or a week 
or whatever, the shaded 
region in the figure has 
the same area, regard-
less of where the planet 
is in its orbit. Now, 
since the sun is off-cen-
ter, this law implies that 
the planets travel faster 
when they are closer 
to the sun and slower 
when they are farther 
away. Keep thinking 
about how stunning it 
is that a guy without a calculator or any modern computer could figure this out, all from the 
observational data that Tycho had assembled.

planet travels a 
specific length 

of timespecific area swept 
out in space

planet
travels an

equal length of time

equal area swept out 
in space

Figure 2.24. Equal areas are swept in space for equal periods of time (Kepler’s 
Second Law).

Figure 2.23. A planet in an elliptical orbit 
around the sun (Kepler’s First Law).

elliptical orbit

sun

planet
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Kepler’s third law is definitely more mathematically complex than the first two. This 
law is shown in the next box.

Third Law	 The orbits of any two planets are related as follows:

T1

T2

⎛
⎝⎜

⎞
⎠⎟

2

= R1

R2

⎛
⎝⎜

⎞
⎠⎟

3

where T1 and T2 are the planets’ orbital periods, and R1 and R2 are their mean distances 
from the sun.

You might be relieved to learn that we will not be doing any computations with this law. 
However, Kepler’s third law of planetary motion is a stunning example of the mathematical 
modeling that physicists do all the time, so I want to comment on it here for a bit.

The third law is quite accurate. The equation can be expressed in a way that shows that 
the orbital period, T, for any planet depends simply on the planet’s mean distance from the 
sun, R. This expression of the third law is written as

T = kR 3
2

In this equation, k is simply a constant that depends on the units used for T and R. I am 
not planning to go crazy with the math here, and I know you may be freaking out wonder-
ing what it means to raise a variable like R to the 3/2 power. Right now it doesn’t matter. 
You will learn all that when you get to Algebra 2. I just want to show how simple Kepler’s 

Johannes Kepler viewed his discoveries of the mathematical order of nature as amazing 
revelations given to him by God. Some of the things Kepler worked on were very strange, 
such as his attempt to develop a theory of the spheres associated with the five regular 
Platonic solids and the mathematics of musical ratios developed by the Greeks. Although 
those ideas were abandoned, Kepler had the courage to look carefully at the astronomical 
data and this led him to his discovery of the laws of planetary motion.

Read the prayer Kepler wrote at the end of his book Harmonies of the World:

O Thou Who dost by the light of nature promote in us the desire for the light of grace, that 
by its means Thou mayest transport us into the light of glory, I give thanks to Thee, O Lord 
Creator, Who hast delighted me with Thy makings and in the works of Thy hands have I 
exulted. Behold! now, I have completed the work of my profession, having employed as 
much power of mind as Thou didst give to me; to the men who are going to read those 
demonstrations I have made manifest the glory of Thy works, as much of its infinity as the 
narrows of my intellect could apprehend. My mind has been given over to philosophizing 
most correctly: if there is anything unworthy of Thy designs brought forth by me—a worm 
born and nourished in a wallowing place of sins—breathe into me also that which Thou 
dost wish men to know, that I may make the correction: If I have been allured into rashness 
by the wonderful beauty of Thy works, or if I have loved my own glory among men, while 
I am advancing in the work destined for Thy glory, be gentle and merciful and pardon me; 
and finally design graciously to effect that these demonstrations give way to Thy glory and 
the salvation of souls and nowhere be an obstacle to that.

—from Johannes Kepler, Harmonies of the World (1619)
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third law really is. Think about it. This simple equation accurately relates the period of any 
planet’s orbit to that planet’s mean distance from the sun.

Now I don’t know about you, but when I see an equation that is as amazing and as 
simple as this, it sets me thinking. First, Kepler’s work as a scientist is first class. He figured 
this out from data collected in the era before calculators and before computers. This was 
only three years after Shakespeare died!

Second, this equation says something deep about the universe we live in. The universe 
can be modeled with simple mathematics that can be understood by high school kids! How 
do you think this could be possible? Is it possible that a randomly evolving universe that 
occurred by chance, with no plan, could exhibit this kind of deep mathematical structure? 
I do not believe it is and I am not alone. Many great scientists—even non-Christian sci-
entists—have called attention to the beautiful mathematical structure that appears every-
where in nature and have called it either a great mystery or evidence of God’s handiwork. 
The fact that our solar system has the kind of beautiful and simple mathematical structure 
represented by Kepler’s third law is strong evidence for an intelligent creator. This is not to 
say that Kepler’s third law is itself the truth about nature. It is quite accurate, but as we will 
see below, claiming that it is the truth is an overstatement. But the fact that nature can be 
accurately modeled with mathematics by humans—even if we don’t know the exact truth of 
nature itself—is because nature exhibits an order and regularity that can only be explained 
by the hand of “the Best and Most Orderly Workman of all.”

2.3.9 Galileo
Galileo Galilei (Figure 2.25) worked at the university at Padua, Italy, and later as chief 

mathematician and philosopher for the ruling Medici family in Florence, Italy. Galileo’s 
work in astronomy represents the climax of the Copernican Revolution. He made signifi-
cant improvements to the telescope and used the telescope to see the craters on the moon 
and sunspots, which provided additional evidence that the heavens were not perfect and 
unchanging as Aristotle and Ptolemy had maintained. In 1610, he used the telescope to 
discover four of the moons around Jupiter, which was 
clearly in conflict with the idea that there had to be 
exactly seven heavenly bodies. He was fully on board 
with all the new science of the Copernican model, 
but, oddly, he never did accept Kepler’s discovery that 
the planets’ orbits were elliptical rather than circular. 
Galileo published his early astronomical discoveries 
in 1610 in a book called The Starry Messenger.

Most people know that Galileo was put on trial in 
1633 by the Holy Office of the Inquisition established 
by Roman Catholic Church. However, the reasons for 
that trial are widely and seriously misunderstood. The 
real story is rather illuminating, and I will explain it 
here as briefly as possible.

Galileo is famous for this remark: “Philosophy 
is written in this grand book—I mean the universe—
which stands continually open to our gaze, but it can-
not be understood unless one first learns to compre-
hend the language in which it is written. It is written 
in the language of mathematics.” This beautiful state-

Figure 2.25. Florentine scientist Galileo 
Galilei (1564–1642).
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ment calls attention to the mathematical structure of creation, which, as we saw above, is 
strong evidence for a wise creator behind the existence of the universe. However, Galileo 
erred in taking his statement too far, claiming that the mathematics he used in his astro-
nomical discoveries was the truth about nature. Galileo felt that his work proved beyond 
question that Copernicus was right. Galileo, along with other scientists over the next three 
centuries, still had to learn the limits associated with human modeling of nature. 

In contrast to Galileo’s attitude toward his work is the attitude of his friend Cardi-
nal Roberto Bellarmine, an important Church official. Bellarmine was a great admirer of 
Galileo’s work, but Bellarmine’s thinking was very much along the lines of our discussion 
in the previous chapter: scientific inquiry leads to theories which are models and cannot 
be regarded as truths; models are provisional and subject to change. In this attitude of an 
important Church official, we recognize a remarkable early statement of the attitude toward 
scientific knowledge that today is held as the correct way to think about scientific theories. 
Bellarmine cautioned Galileo that no natural science could make claims as to truth and 
urged him to present his ideas as everyone thought Copernicus had done—as hypotheses 
rather than as truths.

There were definitely mistakes on both sides of the conflict that led eventually to Gali-
leo’s trial by the Holy Office. On Galileo’s part, the mistake was in pushing his ideas too 
forcefully with the claim that they were true. Galileo’s position implied that the theologians 
who claimed that the Bible lined up with the Ptolemaic system were wrong in their interpre-
tation of the Bible. Galileo wrote an important letter at that time explaining that the theo-
logians needed to reconsider their interpretations of Scripture in light of what the scientific 
evidence was showing. Galileo was correct in his views about interpreting Scripture, but his 
claims pertaining to the truth of his discoveries went too far.

To the theologians and church officials who held to the Ptolemaic view, having their 
views called into question was equivalent to calling the Bible itself into question. This was 
their mistake: they did not yet understand that the Bible has to be interpreted just as ob-
servations of nature have to be interpreted, and they were not yet ready to reconsider their 
views about the heavens and their interpretations of Scripture. It is interesting to note that 
in 1992, Pope John Paul II gave an address in which he commended Galileo’s comments on 
the necessity of interpreting Scripture!

Recall that at this time, there was as yet no physical evidence that the earth was moving 
and rotating on an axis. As I mention in Section 2.3.7, the first actual evidence for earth’s 

motion around the sun came in 1838 with 
the discovery of stellar parallax. Evidence 
for the rotation of the earth came a bit later 
in 1851 with the invention of Foucault’s 
pendulum, like the one shown in Figure 
2.26. The rotation of the earth causes a 
small change of direction in each swing of 
a very long, massive pendulum. If the earth 
were not rotating, the pendulum would 
swing steadily back and forth in the same 
direction. 

Now, briefly, here is the sequence of 
events that led to Galileo’s trial. Rumors 
got around that Galileo had been secretly 
examined by the Holy Office and forced to 

Figure 2.26. A Foucault Pendulum in the Panthéon in 
Paris.
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abjure (renounce) his views about Copernicus. To help Galileo fight these annoying ru-
mors, Cardinal Bellarmine wrote Galileo a letter in 1616 stating that the rumors were false. 
The letter went on to say that though Galileo had not been taken before the Holy Office, he 
had been told not to defend or teach as true the system of Copernicus. Then in 1632, Gali-
leo published another major work on astronomy in which he did in fact uphold the system 
of Copernicus against the system of Ptolemy. The Pope at the time, Urban VIII, was also a 
friend and admirer of Galileo, but when he heard that Galileo had published such a book 
after having specifically been told not to, he was extremely upset and had no choice but to 
have Galileo examined by the Holy Office. This was Galileo’s famous 1633 trial.

The details leading to Galileo’s trial are very complex, but the controversy boils down to 
the two issues I have emphasized. First, Galileo pushed his scientific claims too far, claiming 
truth for a scientific theory which could not be regarded as more than a model of nature. 
Second, he published a book in defiance of an injunction against doing so. Galileo was a 
pious and godly man. There is good evidence that he never did actually intend to fall afoul 
of the injunction. But when the Holy Office persuaded him that he had, he was immediately 
ready to confess his actions and abjure them. This he did. Galileo was never tortured, but it 
was necessary that he be punished in some way. His friend Pope Urban VIII made it as easy 
on Galileo as he could by confining him to “house arrest” and prohibited him from further 
publishing. He lived for a few months in Rome in the palace of one of the cardinals, and 
then was allowed to return to his home in Florence were he lived in house arrest for the last 
eight years of his life.

In addition to his work in astronomy, Galileo developed ground-breaking ideas in 
physics over the course of 30 years of work. These ideas were published after his trial in 
what would be his final book.6 Before Galileo, scientists had always accepted Aristotle’s 
physics, which held that a force was needed to keep an object moving. Galileo broke with 
this 2,000-year-old idea and hypothesized that force was needed to change motion but not 
to sustain motion as Aristotle had taught. Galileo was the first to formulate the idea of a fric-
tion force that caused objects to slow down. By conducting his own experiments, Galileo 
also discovered that all falling objects accelerate at the same rate (the acceleration of gravity, 
9.80 m/s2), which is mathematically very close to Isaac Newton’s second law of motion (our 
topic in the next chapter). Galileo’s studies in physics thrust forward the Scientific Revolu-
tion and set the stage for the work of Isaac Newton, where the Scientific Revolution reached 
its climax.

The saga of the Copernican Revolution ends more or less with Galileo. Within 50 years 
of Galileo’s death, the heliocentric model of the planetary orbits was becoming widely ac-
cepted. But while we are studying the planets and gravity, the whole story just isn’t complete 
unless we mention two more key figures in the history of science.

2.3.10 Newton, Einstein, and Gravitational Theory
Sir Isaac Newton (Figure 2.27) is perhaps the most celebrated mathematician and sci-

entist of all time. He was English, as his title implies, and he was truly phenomenal. He held 
a famous professorship in mathematics at Cambridge University. He developed calculus. 
He developed the famous laws of motion, which we will examine. He developed an entire 
theory of optics and light. He formulated the first quantitative law of gravity called the law 

6	 Since he was forbidden to publish through the Catholic Church, the book was published by a 
Protestant publisher in Holland.
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of universal gravitation. His massive work on motion, grav-
ity, and the planets, Principia Mathematica, was published in 
1687. This work is one of the most important publications in 
the history of science.

In this course, we do not perform computations with 
Newton’s law of universal gravitation, and you do not need 
to memorize the equation for it. But let’s look at it here brief-
ly. The law is usually written as

F =Gm1m2

d2

where G is a constant, m1 and m2 are the masses of any two 
objects (such as the sun and a planet), and d is the distance 
between the centers of the two objects.

Newton theorized that every object in the universe pulls 
on every other object in the universe, which is why his law is 
called the law of universal gravitation. We now understand 
that he was correct. Everything in the universe pulls on ev-

erything else. I have no idea how Newton figured this out. The equation above gives the 
force of gravitational attraction between any two objects in the universe. Amazingly, this 
equation is quite accurate, too! Notice from the equation that Newton’s model depends 

Do You Know ...	 Who built the first monster telescope?
William Herschel was a German astronomer who moved to England when he was a 

young man. He was a major contributor to pushing the technology of the reflecting 
telescope to new limits, and spent vast amounts of time casting and polishing his 
own mirrors. He constructed the largest telescopes ever built at the time.

In 1781, Herschel discov-
ered the planet Uranus. Her-
schel’s sister Caroline was an 
important astronomer herself. 
She worked closely with her 
brother. Herschel gave her a 
telescope of her own and with 
it she discovered many new 
comets, for which she became 
recognized.

Herschel’s monster 40-foot 
telescope, shown to the left, 
had a primary mirror over four 
feet in diameter. In 1789, on 
the first night of using the new 
telescope, Herschel discovered 
a new moon of Saturn. He dis-
covered another new moon 
about a month later.

Figure 2.27. English scientist Isaac 
Newton (1643–1727).
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on each object having mass because the force of gravity has 
both masses in it multiplied together. Newton’s model im-
plies that if either mass is zero, the force of gravitational at-
traction is zero.

While we are here looking at Isaac Newton, we should 
pause and consider the relationship between his physical 
theories (including law of universal gravitation and his laws 
of motion) and Kepler’s mathematical theory of planetary 
motion. It turns out that Kepler’s discovery about the ellipti-
cal orbits and the relationship between the period and mean 
radius of the orbit can be directly derived from Newton’s 
theories, and Newton does derive them in Principia Math-
ematica. But Newton’s equations apply much more gener-
ally than Kepler’s do. As we see in the next chapter, New-
ton’s laws apply to all objects in motion—planets, baseballs, 
rockets—while Kepler’s laws apply to the special case of the 
planets’ orbits. If we consider this in light of my comments 
in Chapter 1 about the way theories work, we see that Newton’s laws explain everything Ke-
pler’s laws explain, and more. Th is places Newton’s theory about motion and gravity above 
Kepler’s, so Newton’s theories took over as the most widely-accepted theoretical model ex-
plaining gravity and motion in general. However, even though Newton’s laws ruled the 
scientifi c world for nearly 230 years, they do not tell the whole story.

Th is is where the German physicist Albert Einstein (Figure 2.28) comes in with his 
general theory of relativity, published in 1915. Einstein’s theory explains gravity in terms of 
the curvature of space (or more accurately, spacetime) around a massive object, such as the 
sun or a planet. Th is spacetime curvature is represented visually in Figure 2.29. Fascinat-
ingly, since Einstein’s theory is about curving space, the theory predicts that even phenom-
ena without mass, such as rays of light, are aff ected by gravity. Einstein noticed this and 
made the stunning prediction in 1917 that starlight bends as it travels through space when 
it passes near a massive object such as the sun. He formed this hypothesis, including the 
amount light bends, based on his general theory of relativity, which was based completely on 
mathematics. What do you think about that? It practically leaves me speechless.

Einstein became instantly world famous in 1919 when his prediction was confi rmed. 
To test this hypothesis, Einstein proposed photographing the stars we see near the sun dur-
ing a solar eclipse. Th is has to be done during an eclipse because looking at the sky while the 
sun is nearby means it is broad daylight and we aren’t able to see the stars. Einstein predict-
ed that the apparent position of the stars shift s a tiny amount relative to where they appear 
when the sun is not near the path of the 
starlight. British scientist Sir Arthur 
Eddington commissioned two teams of 
photographers to photograph the stars 
during the solar eclipse of 1919. Aft er 
analyzing their photographic plates 
(one of which is shown on the open-
ing page of Chapter 1), they found the 
starlight shift ed by exactly the amount 
Einstein said it would. Talk about sud-
den fame—Einstein became the instant 

Figure 2.28. German physicist Albert 
Einstein (1879–1955).

Figure 2.29. A visual representation of the curvature of 
spacetime around the earth.
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Chapter 2 Exercises

Unit Conversions
It is time for you to get busy learning the metric prefixes and unit conversion factors in 
Appendix A. Perform the following unit conversions, showing all your work in detail. 
(Showing just the answers is not adequate; show all the conversion factors involved 
in the conversion for each problem.) Check your work against the answer key on the 
next page. Where possible, express your results in both standard notation and scien-
tific notation, using the correct number of significant digits. For the first 20 problems, 
use the standard method of multiplying conversion factors. The last problem requires 
an extra step that I think you can figure out.

Convert this Quantity Into these Units

1 1,750 meters (m) feet (ft)

2 3.54 grams (g) kilograms (kg)

3 41.11 milliliters (mL) liters (L)

4 7 × 108 m
(radius of the sun)

miles (mi)

5 1.5499 × 10–12 millimeters (mm) m

6 750 cubic centimeters (cm3 or cc)
(size of the engine in my old motorcycle)

m3

7 2.9979 × 108 meters/second (m/s)
(speed of light)

ft/s

8 168 hours (hr)
(one week)

s

9 5,570 kilograms/cubic meter (kg/m3)
(average density of the earth)

g/cm3

10 45 gallons per second (gps)
(flow rate of Mississippi River at the source)

m3/minute

(m3/min)

11 600,000 cubic feet/second (ft3/s)
(flow rate of Mississippi River at New Orleans)

liters/hour (L/hr)

12 5,200 mL
(volume of blood in a typical man’s body)

m3

global rock star of physics when this happened! (And his puppy dog eyes contributed even 
more to his popularity!)

Just as Kepler’s laws were superseded by Newton’s laws and can be derived from New-
ton’s laws, Newton’s law of universal gravitation was superseded by Einstein’s general theory 
of relativity and can be derived from general relativity. Einstein believed that his own theo-
ries would some day be superseded by an even more all-encompassing theory, but so far 
(after 103 years) that has not happened. The general theory of relativity remains today the 
reigning champion theory of gravity, our best understanding of how gravity works, and one 
of the most important theories in 20th- and 21st-century physics.
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Convert this Quantity Into these Units

13 5.65 × 102 mm2

(area of a postage stamp)
square inches (in2)

14 32.16 ft/s2

(acceleration of gravity, or one “g”)
m/s2

15 5,001 μg/s kg/min

16 4.771 g/mL kg/m3

17 13.6 g/cm3

(density of mercury)
mg/m3

18 93,000,000 mi
(distance from earth to the sun)

cm

19 65 miles per hour (mph) m/s

20 633 nanometers (nm)
(wavelength of light from a red laser)

in

21 5.015% of the speed of light mph

Answers
(A dash indicates that it is either silly or incorrect to write the answer that way, so I 
didn’t: silly because there are simply too many zeros, or no zeros at all; incorrect be-
cause we are unable to express the result that way and still show the correct number 
of significant digits.)

Standard Notation Scientific Notation

1 5,740 ft 5.74 × 103 ft

2 0.00354 kg 3.54 × 10–3 kg

3 0.04111 L 4.111 × 10–2 L

4 400,000 mi 4 × 105 mi

5 – 1.5499 × 10–15 m

6 0.00075 m3 7.5 × 10–4 m3

7 983,560,000 ft/s 9.8356 × 108 ft/s

8 605,000 s 6.05 × 105 s

9 5.57 g/cm3 –

10 – 1.0 × 101 m3/min

11 60,000,000,000 L/hr 6 × 1010 L/hr

12 0.0052 m3 5.2 × 10–3 m3

13 0.876 in2 8.76 × 10–1 in2

14 9.802 m/s2 –

15 0.0003001 kg/min 3.001 × 10–4 kg/min

16 4,771 kg/m3 4.771 × 103 kg/m3
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Standard Notation Scientific Notation

17 13,600,000,000 mg/m3 1.36 × 1010 mg/m3

18 – 1.5 × 1013 cm

19 29 m/s 2.9 × 101 m/s

20 0.0000249 in 2.49 × 10–5 in

21 33,700,000 mph 3.37 × 107 mph

Motion Exercises
1.	 A train travels 25.1 miles in 0.50 hr. Calculate the velocity of the train.

2.	 Convert your answer from the previous problem to km/hr.

3.	 How far can you walk in 4.25 hours if you keep up a steady pace of 5.0000 km/hr? 
State your answer in km.

4.	 For the previous problem, how far is this in miles?

5.	 On the German autobahn there is no speed limit and in good weather many cars 
travel at velocities exceeding 150.0 mi/hr. How fast is this in km/hr?

6.	 Referring again to the previous question, how long does it take a car at this veloc-
ity to travel 10.0 miles? State your answer in minutes.

7.	 An object travels 3.0 km at a constant velocity in 1 hr 20.0 min. Calculate the ob-
ject’s velocity and state your answer in m/s.

8.	 A car starts from rest and accelerates to 45 mi/hr in 36 s. Calculate the car’s accel-
eration and state your answer in m/s2.

9.	 A rocket traveling at 31 m/s fires its retro-rockets, generating a negative accelera-
tion (it is slowing down). The rockets are fired for 17 s and afterwards the rocket is 
traveling at 22 m/s. What is the rocket’s acceleration?

10.	 A person is sitting in a car watching a traffic light. The light is 14.5 m away. When 
the light changes color, how long does it take the new color of light to travel to 
the driver so that he can see it? State your answer in nanoseconds. (The speed of 
light in a vacuum or air, c, is one of the physical constants listed in Appendix A 
that you need to know.)

11.	 A proton is uniformly accelerated from rest to 80.0% of the speed of light in 18 
hours, 6 minutes, 45 seconds. What is the acceleration of the proton?

12.	 A space ship travels 8.96 × 109 km at 3.45 × 105 m/s. How long does this trip take? 
Convert your answer from seconds to days.

13.	 An electron experiences an acceleration of 5.556 × 106 cm/s2 for a period of 45 ms. 
If the electron is initially at rest, what is its final velocity?

14.	 A space ship is traveling at a velocity of 4.005 × 103 m/s when it switches on its 
rockets. The rockets accelerate the ship at 23.1 m/s2 for a period of 13.5 s. What is 
the final velocity of the rocket?

15.	 A more precise value for c (the speed of light) than the value given in Appendix A 
is 2.9979 × 108 m/s. Use this value for this problem. On a particular day the earth 
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is 1.4965 × 108 km from the sun. If on this day a solar flare suddenly occurs on the 
sun, how long does it take an observer on the earth to see it? State your answer 
in minutes.

Answers

1.	 22 m/s 2.	 79 km/hr 3.	 21.3 km 4.	 13.2 mi

5.	 241.4 km/hr 6.	 4.00 min 7.	 0.63 m/s 8.	 0.56 m/s2

9.	 –0.53 m/s2 10.	 48.3 ns 11.	 3,680 m/s2 12.	 301 days

13.	 2.5 × 103 m/s 14.	 4.32 × 103 m/s 15.	 8.3197 min

Ptolemaic Model and Copernican Revolution Study Questions
1.	 Make a list of all the regions in the Ptolemaic Model in their correct order. (There 

are 10 of them and the first nine are called spheres.) For each of the last three 
regions write a brief description of the meaning of the name.

2.	 Describe why some theologians in the 16th century were strongly opposed to 
Copernicus’ heliocentric theory.

3.	 State six features of the Ptolemaic model other than the spheres.

4.	 Describe Copernicus’ model of the heavens.

5.	 What are some of the “proofs” people used in arguing that there is no way that the 
earth rotates on an axis?

6.	 For what reason did Copernicus decide to keep his theory private?

7.	 Write a description of the two key observations Tycho made (including dates) 
that challenged the Ptolemaic system.

8.	 Briefly describe the cosmological model put forward by Tycho.

9.	 State Kepler’s first law of planetary motion.

10.	 This is a bit difficult, but explain retrograde motion and epicycles as well as you 
can in a few sentences.

11.	 Explain the two main mistakes individuals made that led to Galileo’s trial.

12.	 Explain the actual cause of Galileo’s trial and the results of that trial.

13.	 Describe why Pope John Paul II commended Galileo in 1992.

14.	 Distinguish between Newton’s and Einstein’s theories of gravitation. According to 
each of these two geniuses, what is the cause of gravity and what are the effects 
of gravity?

15.	 The theories reviewed in this chapter suggest that the universe possesses a very 
deep mathematical structure. What does this structure indicate about where the 
universe came from?

16.	 Describe some of Kepler’s scientific achievements, aside from his laws of plan-
etary motion.
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Large Hadron Collider

In the Large Hadron Collider (LHC) at CERN in Switzerland (see box on page 12), protons 
are accelerated and collided at extremely high energies. The purpose of these collisions 
is to help scientists discover more about the fundamental structure of matter. Theory 
predicts the existence of a particle called the Higgs Boson. The image above is a com-
puter simulation of a Higgs detection event inside the CMS detector at the LHC. The 
CMS website states, “The lines represent the possible paths of particles produced by the 
proton-proton collision in the detector while the energy these particles deposit is shown 
in blue.”

As you know, the speed of light is 300,000,000 m/s. To generate the energy needed to 
observe the Higgs Boson, protons are accelerated to a speed that is only 3 m/s slower 
than the speed of light! At this speed, the protons only require 90 μs (0.000090 s) to trav-
el 17 miles around the main underground tunnel of the LHC. This huge kinetic energy 
is way beyond the energy produced by any other particle accelerator yet constructed.
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Memorize and learn how to use these equations:

EG =mgh 	 EK = 1
2mv2

	 v = 2EK

m 	 W = Fd

After studying this chapter and completing the exercises, students will be able to do 
each of the following tasks, using supporting terms and principles as necessary: 

1.	 State the law of conservation of energy.
2.	 Describe how energy can be changed from one form to another, including:

a.	 different forms of mechanical energy (kinetic, gravitational potential, elastic 
potential)

b.	 chemical potential energy
c.	 electrical energy
d.	 elastic potential energy
e.	 thermal energy
f.	 electromagnetic radiation
g.	 nuclear energy
h.	 acoustic energy

3.	 Briefly define each of the types of energy listed above.
4.	 Describe two processes by which energy can be transferred from one object to 

another (work and heat), and the conditions that must be present for the energy 
transfer to occur.

5.	 Describe in detail how energy from the sun is converted through various forms to 
end up as energy in our bodies, as energy used to run appliances in our homes, or 
as energy used to power machines in industry.

6.	 Explain why the efficiency of any energy conversion process is less than 100%.
7.	 Calculate kinetic energy, gravitational potential energy, work, heights, velocities, 

and masses from given information using correct units of measure. 
8.	 Define friction.
9.	 Using the pendulum as a case in point, explain the behavior of ideal and actual 

systems in terms of mechanical energy.
10.	 Explain how friction affects the total energy present in a mechanical system.

4.1	 What is Energy?

4.1.1 Defining Energy
Defining energy is tricky. Dictionaries usually say, “the capacity to do mechanical 

work,” which is not particularly helpful. Actually, there is no definition for energy that gets 
at what it actually is, so I will not try to define it. We are just going to accept that energy 
exists in the universe, it was put there by God when he made the universe, and it exists in 
many different forms. It is fairly obvious that a bullet traveling at 2,000 ft/s has more energy 
than a bullet at rest. This is why the high speed bullet can kill but the bullet at rest cannot. 
This study is mainly about tracking energy as it changes from one form to another, and 
calculating the quantities of three particular forms of energy.
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4.1.2 The Law of Conservation of Energy
The law of conservation of energy is as follows:

Energy can be neither created nor destroyed, only changed in form.

Energy can be in many different forms in different types of substances, such as in the 
molecules of gasoline, in the waves of a beam of light, in heat radiating through space, in 
moving objects, in compressed springs, or in objects lifted vertically on earth. As different 
physical processes occur—such as digesting food, throwing a ball, operating a machine, 
heating due to friction, or accelerating a race car—energy in one form is being converted 
into some other form. Energy might be in one form in one place, such as in the chemical 
potential energy in the muscles of your arm, and be converted through a process such as 
throwing a ball to become energy in another form in another place, such as kinetic energy 
in the ball.

4.1.3 Mass-Energy Equivalence
In 1905, Albert Einstein published his now-famous equation, E = mc2. The E and m in 

this equation represent energy and mass; c represents the speed of light.  With this equation, 
Einstein theorized that mass and energy are really just different forms of the same thing. 
That is, all mass has associated with it an equivalent amount of energy (given by E = mc2), 
and vice versa. This theory of mass-energy equivalence is now considered to be a funda-
mental property of the universe.

The reason I mention mass-energy equivalence here is that since mass is a form of 
energy, matter must be taken into consideration for a completely accurate statement of the 
law of conservation of energy. In nuclear reactions, such as take place in the sun (fusion) or 
in nuclear power plants (fission), quantities of matter are converted completely into energy. 
Einstein’s equation E = mc2 also gives the amount of energy that appears when a quantity 
of matter in converted to energy in one of these nuclear processes. Thus, to be completely 
accurate, we need to state that the law of conservation of energy includes all mass as well, 
as one of the forms energy can take. Let’s restate the conservation law with this in mind: 
“mass-energy can be neither created nor destroyed, only changed in form.”

Most of the problems we encounter in physics and chemistry don’t involve nuclear 
reactions (thankfully). This means that for most purposes, we can consider the common 
forms of energy listed below without worrying about the complicated issue of mass-energy 
equivalence.

4.2	 Energy Transformations

4.2.1 Forms of Energy
Here are some common forms energy can take:

Gravitational Potential Energy   This is the energy an object possesses because it has 
been lifted up in a gravitational field. If such an object is released and allowed to fall, the 
gravitational potential energy converts into kinetic energy. The term potential in the name 
of this form of energy indicates that the energy is stored and converts into another form of 
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energy when released. There are other forms of energy listed below that use this term for 
the same reason.

Kinetic Energy   This is the energy an object possesses because it is in motion. The faster 
an object is moving, the more kinetic energy the object has.

Electromagnetic Radiation   This is the energy in electromagnetic waves traveling 
through space, or through media such as air or glass. This type of energy includes all forms 
of light, as well as radio waves, microwaves, and a number of other kinds of radiation. We 
study electromagnetic waves in some detail in a later chapter.

Chemical Potential Energy   This energy is in the chemical bonds of molecules. In the 
case of substances that burn, the chemical potential energy in the molecules is released in 
large quantities as heat and light when the substance is burned, making these substances 
useful as fuel.

Electrical Energy   This is energy flowing in electrical conductors, such as from a power 
station to your house to power your appliances.

Thermal Energy   This is the energy a substance possesses due to being heated. We exam-
ine thermal energy more closely in Chapters 6 and 7.

Elastic Potential Energy   This is the energy contained in any object that has been 
stretched (such as a bungee cord or a hunter’s bow) or compressed (such as a spring).

Nuclear Energy   This is energy released from the nuclear processes of fission (when the 
nuclei of atoms are split apart) or fusion (when atomic nuclei are fused together). As I men-
tion in the previous section, these processes convert mass into energy.

Acoustic (Sound) Energy    This is the energy carried in sound waves, such as from a per-
son’s voice, the speakers in a sound system, or the noise of an explosion. Since sound waves 
are carried by moving air molecules, this is really a special form of kinetic energy.

4.2.2 Energy Transfer
Two more important energy-related terms are those associated with the process of en-

ergy being transferred from one place, substance, or object to another. These two terms are:

Work   Work is a mechanical process by which energy is transferred from one object to 
another. Objects do not possess work like they do other forms of energy. Instead, one object 
“does work” on another object by applying a force to it and moving it a certain distance. 
When one object does work on another, energy is transferred from the first object to the 
second. We study work in more detail later in the chapter.

Heat    The term heat is used as a general description of energy in transit, flowing by vari-
ous means from a hot substance to a cooler substance when a difference in temperature is 
present. We study heat and the three ways it flows in more detail in Chapter 7. As with work, 
substances do not possess heat. What substances do possess is kinetic energy in their mov-
ing atoms, and we refer to this energy as the internal energy of the substance.
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Let’s look at a 
common example 
of energy changing 
from one form into 
others. We all know 
what happens when 
a person lights a fire-
cracker. (It explodes!) 
What forms of energy 
are present during the 
explosion, and where 
did all this energy 
come from? As illus-
trated in Figure 4.1, 
the energy released 
in the explosion is 
the chemical poten-
tial energy in the mo-
lecular bonds of the 
chemicals inside the 

firecracker. When these chemicals burn, they release a lot of energy. And as you already 
know, an exploding firecracker gives off a flash of light and heat (both are forms of electro-
magnetic radiation), a loud bang, and the fragments of the firecracker are blown all over the 
place. Thus, the chemical potential energy in the powder inside the firecracker is converted 
into several different kinds of energy during the explosion.

Now consider how the law of conservation of energy applies to this explosion. All the 
energy present in the chemicals before the explosion is still present in various forms after 
the firecracker explodes. This is what “conservation” of energy means. We can represent the 
conservation of energy in a sort of equation like this:

chemical potential 
energy in the firecracker

= acoustic energy 
in the bang

kinetic energy 
of flying debris

energy in light 
and heat

+ +

We do not perform any calculations this complex in this course. But later in this chap-
ter, we begin using the principle of conservation of energy to solve problems involving three 
of the forms of energy we have seen so far.

4.2.3 The “Energy Trail”
Much of the energy we depend on here on earth comes to us from the sun. As we track 

the forms this energy takes in its journey from the sun to, say, the energy in our bodies, we 
might call this the “energy trail.” (This way we can have fun yelling Yee-Haw! while we are 
studying this. Ask your teacher for a demonstration.) We now follow the energy trail begin-
ning with the sun, through different processes of conversion, and arriving at different places 
where energy is commonly used.

The sun’s energy is produced by fusion reactions as the nuclei of hydrogen atoms “fuse” 
or stick together to form helium. This is so hard to do that we have not yet succeeded in 
doing it here on earth in a controlled way. However, we have succeeded in doing it in an un-

Figure 4.1. Chemical potential energy in a firecracker is converted into other 
forms of energy when the firecracker explodes.

BANG!
powder in the firecracker 

contains chemical 
potential energy

acoustic (sound) 
energy in the sound 

wave of the bang

kinetic energy in 
the flying debris

energy in the 
electromagnetic 

radiation (light and 
heat) of the flash
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controlled way. Fusion is the same nuclear reaction as the main reaction in a thermonuclear 
bomb. A thermonuclear explosion is an uncontrolled nuclear fusion reaction.

When referring to this energy being produced in the sun, we can simply call it nuclear 
energy. The energy leaves the sun as electromagnetic radiation, a different form of energy, 
and travels through space to us. When this energy arrives at earth, most of it warms the 
ground, oceans, and atmosphere. This is very important for stabilizing the earth’s climate 
and making earth habitable, but unless we collect the energy in a solar collector of some 
kind we are not able to use this energy directly.

However, some of the electromagnetic radiation streaming from the sun is captured by 
plants and converted into chemical potential energy in the molecules in the plants through 
the process of photosynthesis. These plants eventually become the foods we eat or the fuels 
we burn. Current theory holds that in ancient eras in the earth’s history, many vast forests 
were buried and the plant matter was converted underground into what we now call “fossil 
fuels” (petroleum, coal, and natural gas). Some fuels come from living plants too, such as 
firewood from trees and automotive alcohol (ethanol) from corn. The energy in the mol-
ecules of these fuels is chemical potential energy that is converted into heat energy when 
the fuels are burned.

Your task is to describe the energy conversions each step of the way from the sun all 
the way to your breakfast cereal or your computer. Tables 4.1 through 4.4 illustrate a few ex-
amples of following the energy from the sun to different places it can end up here on earth. 
When asked to outline one of these pathways in the “energy trail,” always list two things for 
each step of the way: (1) Where the energy is, and (2) what form the energy is in.

Do You Know ...	 What is dark energy?
When Einstein first developed his equations for the general theory of relativity 

(published in 1915), the equations implied that the universe must be either expand-
ing or contracting. At the time, the prevailing view was that the universe was doing 
neither, so Einstein put a fudge factor in the equations to keep the universe static.

Just a few years later, astronomer Edwin Hubble made observations that enabled 
Belgian Georges Lemaître, a physicist and Catholic priest, to conclude that the uni-
verse was expanding, just like Einstein’s original equations implied! So Einstein took 
the fudge factor out of the equations and said that putting it in was “the biggest blun-
der of his life.”

In the 1990s, astronomers discovered that the expansion of the universe is speeding 
up—the expansion of the universe is accelerating. This seems impossible, because the 
gravitational attraction of the galaxies pulling on each other should be slowing the 
expansion rate down. In a classic illustration of how the Cycle of Scientific Enterprise 
works, no known theory was able to account for the cause of the acceleration, so sci-
entists had to get busy theorizing about this mystery.

At present, the most accepted hypothesis for the cause of the acceleration is the 
presence of an unknown form of energy called dark energy that permeates all of 
space. Calculations indicate that on the basis of mass-energy equivalence, 68% of the 
energy in the universe is dark energy, 27% of the energy is in the form of dark matter 
(see the box on page 8), and only 5% of the energy is in the form of ordinary matter.
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4.2.4 The Effect of Friction on a Mechanical System 
You probably already have a feel for what people mean by the term friction. Friction 

is a force present any time one object or material comes in contact with another object or 
material. The effect of friction is to oppose any relative motion between the two objects in 
contact. The cause of friction is rather complicated, but down at the atomic level friction 
has to do with the electrical attractions and repulsions between the charged particles in the 
atoms of the objects.

Table 4.4. Energy transformations from the sun to a moving steam locomotive.

Table 4.3. Energy transformations from the sun to the heat from a toaster in your house.

Table 4.2. Energy transformations from the sun to a kid on a skateboard, assuming the kid was eating 
chicken.

Table 4.1. Energy transformations from the sun to a flying arrow, assuming the archer was on a 
vegetarian diet.

Where is the 
energy?

The Sun Electro-
magnetic 
waves in 

space

Plants on 
earth

Breakfast 
cereal

Muscles 
in the 

human 
body

Stretched 
bow

Flying 
arrow

What form is 
the energy in?

Nuclear 
energy

Electro-
magnetic 
radiation

Chemical 
potential 

energy

Chemical 
potential 

energy

Chemical 
potential 

energy

Elastic 
potential 

energy

Kinetic 
energy

Where is the 
energy?

The Sun Electro-
magnetic 
waves in 

space

Plants on 
earth

Chicken 
feed

Muscles 
in the 

bodies of 
chickens

Muscles 
in the 

human 
body

Moving 
kid on 
skate-
board

What form is 
the energy in?

Nuclear 
energy

Electro-
magnetic 
radiation

Chemical 
potential 

energy

Chemical 
potential 

energy

Chemical 
potential 

energy

Chemical 
potential 

energy

Kinetic 
energy

Where is the 
energy?

The Sun Electro-
magnetic 
waves in 

space

Plants on 
earth

Fossil fuel 
(coal)

Heat from 
burning 

coal

Steam in 
the boiler

Moving 
train

What form is 
the energy in?

Nuclear 
energy

Electro-
magnetic 
radiation

Chemical 
potential 

energy

Chemical 
potential 

energy

Heat Thermal 
energy

Kinetic 
energy

Where is the 
energy?

The Sun Electro-
magnetic 
waves in 

space

Plants on 
earth

Fossil fuel 
(crude oil, 
coal, natu-

ral gas)

Spin-
ning gas 
turbine 

generator 
at power 
station

Wires 
from the 

power 
station 
to your 
house

Heat from 
the coils 

in the 
toaster

What form is 
the energy in?

Nuclear 
energy

Electro-
magnetic 
radiation

Chemical 
potential 

energy

Chemical 
potential 

energy

Kinetic 
energy

Electrical 
energy

Electro-
magnetic 
radiation
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Friction makes it harder for one object to slide on top of another, which is good if you 
are talking about the friction between the tires of a car and the pavement. If there were no 
friction, cars could not start or stop or steer. (You may experience this physically if you are 
ever in the undesirable position of trying to drive a car on ice.) Friction is also very nice to 
have around any time one is attempting to grab something or clamp something. Without 
friction, things would just slip through our fingers. But friction is undesirable when the goal 
is to design the parts of a machine so they slide smoothly against one another without wear 
or damage to the machine. And, of course, there is friction when an object moves through 
the air. This friction is usually called air resistance or drag.

In this course, we are not considering friction in the calculations we do. However, in 
all real mechanical systems friction plays a significant role. Friction is caused when parts of 
the system rub against each other or when parts of the system move through a fluid such as 
air or water. Just as when you rub your hands together on a cold day, friction always results 
in heating. When the parts of a mechanical system such as a machine get warm from fric-
tion, heat flows from the warm parts into the cooler surrounding environment. (We will 
look more at how this happens in Chapter 7.) This heat energy flowing out of the system is 
energy that used to be in the system.

When heat energy flows out of a system due to friction, the law of conservation of en-
ergy still applies: no energy is created or destroyed. However, the energy remaining in the 
system is reduced by the amount of energy that flows out of the system due to heating from 
friction. A scientist or engineer may refer to energy “lost” due to friction. This does not 
mean the energy is destroyed or ceases to exist, only that it flows out of the system as heat 
and is no longer available as energy in the system. The net effect, of course, is that things 
slow down as energy gradually leaves the system as heat due to friction.

4.2.5 Energy “Losses” and Efficiency
For all the different forms of energy we have considered, there are many different kinds 

of processes that might be involved in converting energy from one form to another. Com-
bustion is a process that converts chemical potential energy into heat. Photosynthesis con-
verts electromagnetic energy from the sun into chemical potential energy in the cells of 
plants. The Industrial Revolution began when humans began learning how to design ma-
chines and systems to convert energy from various forms found in nature into forms that 
can be harnessed to do useful work for us.

Let’s consider some process like this, such as an engine in a car converting the chemical 
potential energy in the gasoline into kinetic energy in the moving car. One of the facts of 
life on earth is that it is theoretically impossible for a conversion process to capture all the 
energy involved and convert it to a form that can do useful work. Whether we want it to or 
not, some of the energy always converts to heat, which radiates out into the environment. 
The laws of thermodynamics state that this is always the case.

This situation is represented in Figure 4.2. It is common to speak of the energy con-
verted into heat as “lost.” Keeping the law of conservation of energy in mind, it should be 
clear that what we mean by this is not that the energy ceases to exist, only that the energy 
escapes into the environment where it is no longer available to us in a usable form. It is lost 
from the system, not from the universe.

The efficiency of an energy conversion process is the ratio of the usable energy coming 
out of the process to the energy that goes into the process:
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Efficiency = useful energy out
energy in

×100%

Since some energy is always lost as heat, the efficiencies of our machines are always less than 
100%. As physical examples, the efficiency of typical automobile engines is only around 
15%, which means that 85% of the energy in the fuel is not used to propel the car. (That’s a 
lot of lost energy.) Solar cells convert electromagnetic radiation from the sun into electric-
ity. At present, the highest efficiency realized with these technologies is around 25%. The 
overall efficiency of the new electric cars is around 20–25%. This figure may seem low, but 
there are a lot of losses in generating the electrical power at a power station and transport-
ing the power to the homes where people charge up the batteries in their electric cars.

4.3	 Calculations with Energy

4.3.1 Gravitational Potential Energy and Kinetic Energy
Two important forms energy can take in mechanical systems are gravitational potential 

energy, EG, and kinetic energy, EK. The gravitational potential energy an object possesses 
depends on how high up it is and the kinetic energy of an object depends on how fast it is 
moving. Both also depend on the object’s mass. Gravitational potential energy is calculated 
as

EG =mgh

where EG is energy in joules (J), m is the mass (kg), g = 9.80 m/s2, and h is the height (m).
Notice that if you know how much gravitational potential energy an object has and its 

mass, you can solve this equation for h to find out how high the object is above the ground. 
Simply divide both sides of the equation by mg and you have

h = EG

mg

Figure 4.2. In any energy conversion process, some energy is converted to heat that is not available to 
do useful work.
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Notice also that the gravitational potential energy of an object is directly proportional to 
its height. If the height of an object increases by 50%, the gravitational potential energy of 
the object also increases by 50%. When calculating gravitational potential energy, the en-
ergy you calculate always depends on the location you choose to use as your zero reference 
for the height. This zero reference might be sea level, or the ground, or the floor of your 
classroom, or a table top. It doesn’t matter, because the EG an object has is always relative 
to where h = 0 is. Usually, the most logical and convenient location for h = 0 is clear from 
the context.

The equation for gravitational potential energy gives us another example of a derived 
MKS unit, the joule, for quantities of energy. Multiplying the units together for the terms 
on the right side of the EG equation, we can see that a joule is made up of primary units as 
follows:

1 J =1 kg ⋅m
s2 ⋅m =1 kg ⋅m2

s2

You might compare this to the units described at the bottom of page 22.

 Example 4.1

A golf ball has a mass of 45.9 g. While climbing a tree near a golf course, little Janie finds a 
golf ball stuck in a branch 9.5 ft above the ground. What is the gravitational potential energy 
of the golf ball at that height?

Start by writing the givens and doing the unit conversions to get all quantities into MKS 
units, keeping one extra significant digit in your intermediate calculations.

m = 45.9 g ⋅ 1 kg
1000 g

= 0.0459 kg

h = 9.5 ft ⋅0.3048 m
ft

= 2.90 m

EG = ?

Now write the equation and complete the problem.

EG =mgh = 0.0459 kg ⋅9.80 m
s2 ⋅2.90 m =1.30 J

These calculations all contain one extra significant digit. The given height only has two 
significant digits, so now we round our final result to two digits.

EG =1.3 J

 Example 4.2

An ant carries a grain of sugar up the side of a building to its nest on the roof. The mass of 
the grain of sugar is 0.0356 μg. After it has been carried to the roof, the EG in the grain of 
sugar is 1.91 nJ. How high is the ant nest?
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Write the givens and do the unit conversions.

m = 0.0356 µg ⋅ 1 g
106  µg

⋅ 1 kg
1000 g

= 3.56×10−11  kg

EG =1.91 nJ ⋅ 1 J
109  nJ

=1.91×10−9  J

h = ?

Now write the equation, solve for h, and compute the result.

EG =mgh

h = EG

mg
= 1.91×10−9  J

3.56×10−11  kg ⋅9.80 m
s2

= 5.47 m

Every value in this computation has three significant digits, as does this result, so the prob-
lem is complete.

Now we look at another important form of energy, kinetic energy. Kinetic energy is one 
of the most important concepts in physics because it relates to many other concepts. Kinetic 
energy is calculated as

EK = 1
2mv2

where EK is the kinetic energy in joules (J), m is the mass (kg), and v is the velocity (m/s). 
The units for kinetic energy are joules, just as with all other forms of energy. Kinetic energy 
is proportional to the mass of an object and to the square of the object’s velocity. 

Notice that if you know how much kinetic energy an object has and its mass, you can 
solve this equation for v to find out how fast the object is moving. Since the algebra to do 
this may be unfamiliar to students in this course, you may want to just go ahead and memo-
rize the equation for velocity as a function of kinetic energy. This equation is

v = 2EK

m

 Example 4.3

An electron with a mass of 9.11 × 10–28 g is traveling at 1.066% the speed of light. Determine 
the amount of kinetic energy the electron has and state your result in nJ.

Start by writing the givens and doing the unit conversions. To obtain the electron’s velocity, 
we must multiply the speed of light (from Appendix A) by 0.01066.
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m = 9.11×10−28  g ⋅ 1 kg
1000 g

= 9.11×10−31  kg

v = 0.01066 ⋅3.00×108  m
s
= 3.198×106  m

s
EK = ?

Now compute the kinetic energy.

EK = 1
2mv2 = 0.5 ⋅9.11×10−31  kg ⋅ 3.198×106  m

s
⎛
⎝⎜

⎞
⎠⎟

2

= 4.658×10−18  J

The problem statement requires the result to be in units of nanojoules (nJ), so perform this 
conversion.

4.658×10−18  J ⋅109  nJ
J

= 4.658×10−9  nJ

Both the mass and the speed of light values have three significant digits, so rounding this 
result to three significant digits gives

EK = 4.66×10−9  nJ

 Example 4.4

A kid fires a plastic dart from a dart gun. The mass of the dart is 21.15 g and its kinetic en-
ergy is 0.3688 J when it flies out the dart gun. Determine the velocity of the dart.

Write the givens and do the unit conversions.

m = 21.15 g ⋅ 1 kg
1000 g

= 0.02115 kg

EK = 0.3688 J
v = ?

Now complete the problem using the memorized velocity equation.

v = 2EK

m
= 2 ⋅0.3688 J

0.02115 kg
= 5.905 m

s

Both the mass and the kinetic energy values have four significant digits, so this result is 
rounded to four significant digits.
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4.3.2 Work
The way an object acquires kinetic energy or gravitational potential energy is that an-

other object or person or machine does work on it. Work is the way mechanical energy is 
transferred from one machine or object to another. Work is a form of energy, but objects 
don’t possess work. Work is the process by which energy is transferred from one mechanical 
system to another. Work is defined as the energy it takes to push an object with a certain 
(constant) force over a certain distance. Work is calculated as

W = Fd

where W is the work done on the object in joules (J), F is the force on the object (N), and d 
is the distance the object moves (m).

Notice from this equation that since work is energy, the units here come out to be

1 J =1 N ⋅m

Let’s take a moment to convince ourselves that the units here are the same as the units 
described above right after the EG equation. The work equation says that joules are equal 
to newtons times meters. A newton is a force, and we know from Newton’s second law of 
motion that force equals mass times acceleration, or F = ma. If we multiply all these units 
together we have

1 J =1 N ⋅m =1 kg ⋅m
s2 ⋅m =1 kg ⋅m2

s2

These units are indeed the same as the units we worked out for gravitational potential en-
ergy a few pages back.

The concept of work is the basic principle governing how energy is transferred from 
one device to another in a mechanical system. For example, as depicted in Figure 4.3, if an 
electric motor is used to lift a piece of equipment, the motor must reel in a certain length, 
L, of steel cable, and it must pull on the cable with a certain force, F, while doing so. The 
pulling force times the length of cable is the amount of work done by the motor. And where 
does this work energy supplied by the motor go? Assuming 100% efficiency in the lifting 
motor and cables (and electric motors have very high efficiencies, so this is not a bad ap-

proximation), the energy all goes into the 
gravitational potential energy acquired by 
the piece of equipment being lifted. In ac-
tuality, since the efficiency of all systems is 
less than 100%, some of the energy leaves 
the system as heat. In the end, the gravita-
tional potential energy of the lifted piece 
of equipment does not quite represent all 
of the energy the electric motor has to 
supply.

We see here that work and conserva-
tion of energy are very closely related. As 
another example, if a man pushes a kid on 
a bicycle over a short distance to get the Figure 4.3. An electric motor raising an object to a height 

L by means of force F pulling on the cable.

F

F

L

L

electric 
motor

equipment to 
be lifted
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kid going, the man delivers energy to the kid on the bicycle equal to the pushing force times 
the distance pushed. Ignoring friction for now, that work energy from the man is now in the 
kinetic energy of the kid on the bicycle.

There are two more important details to note about work. First, the equation for work, 
W = Fd, requires that the force applied to an object and the distance the object travels 
must lie in the same direction. As depicted in Figure 4.4, if a person lifts a bucket of water, 
then work is done on the bucket of water. The force is applied vertically and the bucket 
moves vertically, so the work done to lift a bucket of water is the force required to lift it, 
its weight, times the distance it is lifted. But a person carrying a bucket of water down the 
road is not doing any work on the bucket. 
This is because the force on the bucket 
to hold it up is vertical, but the distance 
the bucket is moving is horizontal. These 
two forces do not point in the same di-
rection. In fact, they are at right angles to 
one another and no work is done on the 
bucket of water.

The second detail is foreshadowed 
in the previous paragraph. People often 
say that the force required to lift a bucket 
is just a little larger than the weight, but 
this is not correct. If the upward force is at all greater than the weight, then we have a net 
upward force on the bucket. Recall from Chapter 3 that Newton’s second law of motion says 
that a net force does not just raise the bucket, it accelerates the bucket, giving it kinetic en-
ergy. But for a bucket to move up with a constant speed requires no net force at all, accord-
ing to the first law of motion. So after a little bump of force to get the bucket moving (which 
does briefly require a larger force and some energy), the bucket can be lifted to any height 
with a force equal to the bucket’s weight. In physics problems of this kind, we normally just 
neglect the little bump of force necessary to get the bucket started and assume that the force 
required to lift the bucket is equal to the weight of the bucket.

So, a handy problem solving tip to keep in mind is this: The force required to lift an 
object is equal to its weight. Recall that you can always calculate the weight of an object from 
its mass as

Fw =mg

Do You Know ...	 What is alpha radiation?
Nuclear radiation is emitted from radioactive substances during the process of nu-

clear decay. One form of radiation, called alpha radiation, consists of alpha particles 
streaming out of the radioactive substance. These incredibly small and fast moving al-
pha particles each consist of two protons and two neutrons. They receive their kinetic 
energy from radioactive atoms as matter in the atom converts into kinetic energy 
during the process of nuclear decay.

In Chapter 6, we encounter the story of Ernest Rutherford, who used the alpha par-
ticles from a compound called radium bromide to explore the structure of the atom. 
The alpha particles emitted from radium bromide are travelling at 15,000,000 m/s! 
This is 9,300 miles per second, a speed that is 5% the speed of light!

Figure 4.4. In raising the bucket (left) work is done on the 
bucket. In moving the bucket horizontally, no work is done 
on the bucket.

F

d

F

d

W = F d

W = 0
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 Example 4.5

An elevator in a skyscraper has a mass of 904.9 kg. Inside the elevator are three people 
whose masses are 67.8 kg, 55.9 kg, and 75.1 kg. Determine how much work the elevator mo-
tor does in lifting this elevator and the people inside it from the ground floor up to the 47th 
floor, 564 ft above the ground floor. Assume there is no friction and state the result in kJ.

Write the givens and do the unit conversions.

m = 904.9 kg+67.8 kg+59.9 kg+75.1 kg =1103.7 kg

d = 564 ft ⋅0.3048 m
ft

=171.9 m

W = ?

As I write just above, the force required to lift an object is equal to its weight. So next we 
need to compute the weight of the elevator and the people.

Fw =mg =1103.7 kg ⋅9.80 m
s2 =10,820 N

My calculator has a lot more digits in it than this, but I see that several of the pieces of given 
information have three significant digits, and I only need one extra digit for intermediate 
calculations, so I round to four digits.

Now complete the problem.

W = Fd = Fwd =10,820 N ⋅171.9 m =1,860,000 J

This result is rounded to three significant digits. As a last step, we convert this value to kilo-
joules, as required by the problem statement.

W =1,860,000 J ⋅ 1 kJ
1000 J

=1860 kJ

4.3.3 Applying Conservation of Energy
When an object is thrown or fired straight up from the ground, it leaves the ground 

with a certain velocity, and thus a certain amount of EK. As it goes up, what happens to this 
EK? It is converted to EG, of course, as the object goes higher and higher and goes slower 
and slower. At the top of its flight, all the energy the object has at the ground in EK has been 
converted into EG. We can use the law of conservation of energy, along with the equations 
for EG and EK, to determine how high the object goes.

The same thing works in reverse. An object at a certain height has EG. If the object is 
then released, as it falls the EG is gradually and continuously converted into EK. Just before 
it hits the ground, all the EG it has at the top has been converted into EK. We can use the law 
of conservation of energy, along with the equations for EG and EK, to find out how fast the 
object is going just before it strikes the ground.
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In all the problems we do in this course involving conservation of energy, we are ignor-
ing friction. In reality, friction is always present in any so-called mechanical system, such 
as moving objects or machines. In Section 4.2.4, we considered the effect friction has on 
mechanical systems, but in our computations we ignore it. Many physical systems can be 
approximated pretty well even if friction is ignored. In the conservation of energy experi-
ment (the Hot Wheels Experiment), friction is low enough that the experimental velocity 
you measure should agree fairly well with the prediction. 

Let us now look at a simple example of the conservation of energy in action. Figure 4.5 
illustrates the application of conservation of energy to a person lifting a bucket and letting 
it drop. When a person lifts a bucket vertically, the person does work on the bucket. To 
compute this work, the force to lift the bucket is the weight of the bucket and the distance 
involved is the height it is lifted, so the work done on the bucket by the person is

W = Fwh

Since the weight, Fw, is equal to mg, this equation can be written as

W = Fwh =mgh

Energy is transferred from the person (the chemical potential energy in the person’s 
muscles) to the bucket, and the bucket now has gravitational potential energy equal to

A bucket on the 
ground.

EG = 0 because 
h = 0, and

EK = 0 because 
v = 0.

A person doing 
work on the bucket. 

The total work 
done is the weight 

of the bucket 
(Fw = mg) times 

the distance lifted 
(height h) so

W = mgh.

The bucket held at 
height h. Work done 
lifting the bucket is 

W = mgh.
This is now the EG 
the bucket has, so

EG = mgh.
The bucket is at 

rest, so
EK = 0.

The bucket is 
released. As the 
bucket falls, its 

total energy all the 
way down equals 

the original energy 
it had due to the 
work done on it, 

mgh. Some of this 
energy is EG at a 
certain height, 

and some is EK at 
a corresponding 

velocity.

h

Just before striking 
the ground, the 

height is essentially 
0 and the bucket 
has velocity v. All 

the original energy 
is now EK, and

EK = ½mv2.

v

Figure 4.5. Conservation of energy applied to a lifted and falling bucket.
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EG =mgh

Right here we can see the conservation of energy at work. The work done by the person 
to lift the bucket is mgh. Where did that energy go? It went into the EG the bucket has at the 
top, which is mgh, the same amount of energy. If the person releases the bucket, then as the 
bucket falls the gravitational potential energy begins to convert to kinetic energy. At any 
point as the bucket is falling, energy is conserved, which means the total energy the bucket 
has is still the same as the energy it has at the top, but some of the energy is in kinetic energy 
and some of it is in gravitational potential energy. At the instant before the bucket hits the 
ground, there is no more gravitational potential energy because the height then is zero, so 
all the energy originally given to the bucket by the work done on it is in the kinetic energy 
of the bucket.

4.3.4 Conservation of Energy Problems
Now we look at a couple of example problems with objects falling down or flying up. 

In these kinds of problems, we use the basic principle of conservation of energy to find out 
how high an object goes or how fast an object is going just before it lands.

A helpful problem solving technique for these kinds of problems is to draw a little 
diagram for yourself to indicate whether the EG is converting to EK (EG → EK ), or vice versa 
(EK → EG). This helps you keep track of what you are doing so you don’t become confused. 
I demonstrate this in the example problems we do below.

One more thing before we do those examples. To help you continue to remember how 
to calculate an object’s mass from its weight, I like to design these problems by giving you 
the weight instead of the mass that you need. So just first do a separate little problem to ob-
tain the object’s mass. Then proceed with the energy calculations. The examples that follow 
make all these things clear.

 Example 4.6

A certain bucket of paint weighs 8.55 lb and is carried up a ladder until it is 4.750 ft above 
the ground. Sadly, the bucket then falls off the ladder. How fast is the bucket of paint moving 
just before it hits the ground and makes a colossal mess?

To start, use the weight equation to obtain the mass of the bucket. As always, we first con-
vert the given weight into MKS units.

Fw = 8.55 lb⋅ 4.45 N
lb

= 38.05 N

m = ?
Fw =mg

m = Fw
g
= 38.05 N

9.80 m
s2

= 3.883 kg

Notice that I do these calculations with four significant digits. This is because the value for 
g has three significant digits and my intermediate results always have an extra digit before 
I round off at the end.



101

Energy

Just as a reminder, the beauty of working in the MKS unit system is that when we use MKS 
units in a calculation, the result always has MKS units. So when I divide newtons (N) by 
meters per second squared (m/s2), I don’t have to worry about puzzling out any unit issues. 
I know this calculation gives me a mass, and the MKS unit for mass is the kilogram (kg).

Now that we have the mass, let’s write down everything and begin the energy calculation.

m = 3.883 kg

h = 4.750 ft ⋅0.3048 m
ft

=1.448 m

v = ?

Now here is our energy diagram for this problem:

EG → EK

This tells me that in this problem, all the EG we have to begin with converts into EK as the 
bucket falls. So I need to calculate the EG first and then use this amount of energy as the EK 
for calculating the velocity.

EG =mgh = 3.883 kg ⋅9.80 m
s2 ⋅1.448 m = 55.10 J

Since this gravitational potential energy converts to kinetic energy, we now have

EK = 55.10 J

Finally, we use this value in the velocity equation to obtain our final result.

v = 2EK

m
= 2 ⋅55.10 J

3.883 kg
= 5.33 m

s

This result is rounded to three significant figures as required.

 Example 4.7

A baseball batter hits a baseball straight up with a velocity of 180 ft/s. A regulation baseball 
has a mass of 144.3 g. Ignoring air friction, how high does the baseball go before it comes 
to a stop?

I work this out using the same method as in the previous problem. First, write down the 
givens and do the unit conversions.
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m =144.3 g ⋅ 1 kg
1000 g

= 0.1443 kg

v =180 ft
s
⋅0.3048 m

1 ft
= 54.9 m

s
h = ?

Now draw the energy diagram that indicates what is happening in this problem. The kinetic 
energy the ball has as it leaves the bat converts to gravitational potential energy as it rises, so

EK → EG

Since we are starting with kinetic energy this time, compute that first.

EK = 1
2mv2 = 0.5 ⋅0.1443 kg ⋅ 54.9 m

s2
⎛
⎝⎜

⎞
⎠⎟

2

= 217 J

Since this energy is converting to gravitational potential energy, at the top of the ball’s flight 
we have

EG = 217 J

Now use this value to solve for the height.

EG =mgh

h = EG

mg
= 217 J

0.1443 kg ⋅9.80 m
s2

=153 m

Finally, recall that the given velocity has only two significant digits, so we must round this 
result to two digits, giving

h = 150 m

4.3.5 Energy in the Pendulum
A swinging pendulum provides us with one final example of the conservation of energy 

in action. To begin, note that because of friction between the swinging pendulum and the 
air and friction in the pivot at the top, any actual pendulum loses energy to the environment 
as heat. This is why any actual free-swinging pendulum always comes to a stop.

But let’s imagine a perfect pendulum, one that loses no energy due to friction. We call 
this an ideal pendulum. In an ideal pendulum, no energy leaves the “system” (the swinging 
pendulum) as heat and the pendulum just keeps on swinging without slowing down. (Ac-
tually, it’s a bit more complicated because of the rotation of the earth, so even in a vacuum 
with a magnetic bearing at the pivot the pendulum still slows down, so don’t start getting 
visions of a perpetual motion machine! But our imaginary ideal pendulum is also free from 
such influences.)
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From what you know about the forms of energy and energy conservation, you can 
probably already see how energy transformation works in this ideal pendulum. As shown 
in Figure 4.6, we let the height of the pendulum when it is at rest (that is, not swinging) be 
our reference for height measurements. Th is means when the pendulum is straight down its 
height is zero and its gravitational potential energy is also zero. When the pendulum swings 
up to its highest point, it momentarily comes to rest. At this moment, its velocity is zero and 
so its kinetic energy is zero. Put 
these facts together and let the 
pendulum start swinging.

Because of the conservation 
of energy, the pendulum always 
has the same total amount of 
energy, no matter where it is. 
When someone lift s the pendu-
lum to get it started, the person 
does work on the pendulum 
equal to the force it takes to lift  
it times the height (just as we 
saw with the bucket example). 
Since the pendulum is ideal, 
no energy leaves the system as 
it swings. Th is means that no 
matter where the pendulum is, 
the total energy in the system is 
always the same and is equal to 
the amount of energy put into 
the system in the fi rst place by the work done on it to get it up to where it is released. As the 
pendulum swings down, EG converts into EK, and as the pendulum swings up, EK converts 
back into EG. At all times, the total energy the pendulum possesses always equals the sum 
of the EG and the EK, and this sum always adds up to the same value no matter where the 
swinging pendulum is.

Just to run through a quick calculation, let’s say the mass at the end of the pendulum is 
2.00 kg and we lift  it up 0.400 m above its lowest point to release it. Th e total EG at this start-
ing point is mgh, which gives EG = 7.84 J. Th e kinetic energy here is zero, so now we know 
that the pendulum has a total of 7.84 J of energy no matter where it is.

How fast is it going when it is halfway down, 0.200 m high? Well, the EG at that position 
is 3.92 J, so the EK is 7.84 J – 3.92 J = 3.92 J. Using this kinetic energy value in the velocity 
equation gives a velocity of 1.98 m/s. At the bottom, all the energy (7.84 J) is kinetic energy, 
so the velocity is 2.80 m/s. As you see, if you know how high the pendulum is at any point, 
you can determine how fast it is moving, and vice versa.

h = 0.400 m
v = 0

h = 0.200 m
v = 1.98 m/s

h = 0
v = 2.80 m/s

Figure 4.6. Conservation of energy in a swinging pendulum.



104

Chapter 4

Chapter 4 Exercises

Energy Study Questions
1.	 Write out the stages in the “energy trail” for the following sequences. For each 

stage, list where the energy is and what form it is in.
a.	 From the sun to a ball thrown straight up at the top of its flight.
b.	 From the sun to a galloping horse.
c.	 From the sun to water stored in a water tower, pumped up there by the city’s 

electric pumps.
d.	 From the sun to a moving motorcycle.
e.	 From the sun to an electric blow dryer for drying hair.
f.	 From the sun to a diesel truck parked at the top of a steep hill.

2.	 Write down the law of conservation of energy from memory. Then write a para-
graph explaining the law in your own words. Include some examples in your ex-
planation.

3.	 From an energy standpoint, what is an “ideal system”? (Think of the ideal pendu-
lum discussed at the end of the chapter.)

4.	 If you run out of gas, your car soon comes to a stop. What happens to all the ki-
netic energy the car has before running out of gas? Where does it go?

Classroom Energy Computation Examples
These examples are written here so that as your teacher works examples in class you 
can focus on the solutions rather than on worrying about getting the problems writ-
ten down.

1.	 Water is pumped into a high water tower. If the total mass of the water is 
1.00 × 105 kg and the tower is 240 feet high, what is the gravitational potential 
energy (EG) of the water in the tower? 

2.	 A bullet of mass 25 g is fired at a velocity of 556 ft/s. How much kinetic energy (EK) 
does the bullet have? 

3.	 A man lifts a bucket of sand 75 cm above the ground. If the bucket of sand has a 
mass of 12,500 g, how much work does the man do on the bucket? 

4.	 Referring again to the previous problem, after the bucket of sand is lifted, how 
much EG does the sand have? 

5.	 If the man releases the bucket of sand and lets it drop, what is its velocity the 
instant before it strikes the ground? 

6.	 A boy carries a water balloon up to the top of a ladder to let it drop. The mass of 
the water balloon is 255.8 g and the ladder is 10.4 ft tall.
a.	 How much EG does the balloon have at the top of the ladder?
b.	 If the balloon is released, how fast is it going just before it splats on the 

ground?
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Answers
1.	 72,000,000 J
2.	 360 J
3.	 92 J
4.	 92 J
5.	 3.8 m/s
6.	 a) 7.95 J; b) 7.88 m/s

Energy Calculations Set 1 
1.	 A load of building materials is hoisted to the top of a building under construction. 

If the total mass of the material is 1.31 × 103 kg and the building is 177.44 feet 
high, what is the gravitational potential energy (EG) of the material at the top of 
the building? 

2.	 A car of mass 2,345 kg is traveling at a speed of 31 mph. How much kinetic energy 
(EK) does the car have? 

3.	 A woman lifts a bucket of water 61.7 cm above the ground. If the bucket of water 
has a mass of 17.5 kg, how much work does the woman do? 

4.	 How much EG does the woman’s bucket have after being lifted? 

5.	 If the woman releases the bucket of water and lets it drop, what is its velocity the 
instant before it strikes the ground? 

6.	 A kid shoots an arrow straight up. The arrow has a mass of 122 g and leaves the 
bow with a velocity of 13.75 m/s. How high does it go above the point where it is 
shot from the bow?

7.	 A girl drops a stone into the water from a bridge. The stone has a mass of 325 g 
and the bridge is 36.1 m above the water. How fast is the stone moving just be-
fore it hits the water? 

8.	 A worker slides a carton across the floor. The force of friction between the carton 
and the floor is 735 N. If the worker pushes the carton 26 m, how much work does 
he do? 

Answers
1.	 694,000 J
2.	 230,000 J
3.	 106 J
4.	 (This answer is top secret!)
5.	 3.48 m/s
6.	 9.65 m
7.	 26.6 m/s
8.	 19,000 J

Energy Calculations Set 2
1.	 A carpenter hauls 20 bundles of shingles up onto a roof, each bundle weighing 

80.0 lb. The roof is 8.5 m above the ground.
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a.	 Compute the total mass of the shingles using the conversion factor for 
pounds to newtons found in Appendix A, and then the weight equation to 
get the mass.

b.	 Compute the work the carpenter has to do to get the shingles up onto the 
roof. State your answer in joules (J).

c.	 Using the equation for gravitational potential energy (EG), compute the EG of 
the shingles while they are on the roof.

d.	 If the entire stack of shingles slides off the roof, how much kinetic energy 
does the stack have at the following times:
i.	 At the moment it first begins to slide.
ii.	 Just before it hits the ground.

e.	 Compute how fast the stack is falling just before it hits the ground. 

2.	 A car weighing 3,193 lb rests at the top of a hill, then begins to roll down the hill. 
(The engine is off.) Assume it rolls to the bottom of the hill with negligible friction.
a.	 If the hill is 16 m high compared to the flat road at the bottom, compute the 

EG of the car while it is at the top of the hill.
b.	 After the car rolls to the bottom of the hill, where is the energy that is in the 

EG of the car while it is at the top of the hill?
c.	 Compute the EK of the car when it reaches the bottom of the hill.
d.	 Compute the velocity of the car when it reaches the bottom of the hill.
e.	 Explain how conservation of energy relates to this problem.
f.	 Explain specifically how friction would change the results of the problem in 

a more realistic example. 

Answers
1.	 a) 727 kg; b) 6.1 × 104 J; c) 6.1 × 104 J; d) 0 J, 6.1 × 104 J; e) 13 m/s

2.	 a) 230,000 J; c) 230,000 J; d) 18 m/s 

Energy Calculations Set 3
1.	 Consider a large, ideal (that is, frictionless) pendulum with a steel ball weighing 

27.05 lb on the end. Keeping the pendulum cable tight, this ball is lifted to a 
height of 185 cm and released. Since the pendulum is frictionless, the ball swings 
back and forth forever.

a.	 How much work is done to lift the ball?
b.	 What is the EG of the ball after it is lifted, but before it starts falling?
c.	 At the bottom of the ball’s pathway, what is its EG?
d.	 At the bottom of the ball’s pathway, what is its EK?
e.	 How fast is the ball going at the bottom?
f.	 Use friction and energy considerations to explain the difference between 

this ideal pendulum and an actual pendulum. Which one has the highest ve-
locity at the bottom of its swing?

2.	 A group of city water pumps pushes water up into a water tower 197 feet high. 
The water tower holds 6.016 × 106 kg of water. Determine the amount of mechan-
ical work the pumps must do to fill the water tower and state your answer in GJ.
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3.	 Imagine a new frictionless roller coaster that uses magnetic levitation so that 
the cars float above the rails without actually touching them. Imagine also that 
the aerodynamic design of the cars is so brilliant that there is essentially no air 
friction. The car has a mass of 5,122 kg. From the top of a 25.0 m-hill, the car 
rolls down to a valley where the track is right on the ground. Assuming the roller 
coaster begins at rest at the top of the hill, determine how fast it is traveling when 
it reaches the bottom of the valley.

4.	 A boy weighing 104.6 lb runs up the steps two at a time. There are 13 steps, each 
one 16.5 cm high. 
a.	 How much work does he do to get to the top of the steps?
b.	 If he steps over the hand rail and drops back down to the ground, how fast is 

he moving just before he lands?

5.	 An object with mass m = 351 g is sliding on a frictionless surface at 500.00 cm/s 
when it begins going up a ramp. What is its height, h, when it stops?

Answers
1.	 a) 223 J; b) 223 J; c) 0 J; d) 223 J; e) 6.02 m/s
2.	 3.54 GJ
3.	 22.1 m/s
4.	 a) 998 J; b) 6.48 m/s
5.	 1.28 m

Do You Know ...	 Why are there pendulums in clocks?
Galileo first discovered that the period of a swinging pendulum 

depends only on its length (a fact you confirm in the Pendulum 
Experiment). Because of this, pendulums are used to regulate the 
motion of the mechanical systems in clocks. The weight on the 
end of the pendulum is supported by a nut on a threaded rod, 
and the vertical position of the nut is adjusted to give the pendu-
lum the precise length needed for the clock to run at the correct 
speed.

The pendulum in a grandfather clock is kept in motion by the 
gravitational potential energy in the weights hanging inside the 
cabinet. As the weights slowly descend, their gravitational poten-
tial energy is transferred to the energy in the swinging pendulum. 
The gravitational potential energy in the weights is replenished 
when a person does work on them, raising them back to their 
highest position to begin descending again. Because of friction, 
the pendulum would eventually stop swinging without receiving 
energy from the continuous action of the descending weights.

As the pendulum swings, it continuously converts its energy from kinetic energy to 
gravitational potential energy and back again.
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C.1	 Important Notes
Please refer to pages xii–xiii in the Preface for Teachers for important information 

pertaining to the terms “experimental error” and “percent difference” as used in this text. 
The following pages contain your guidelines for the five laboratory experiments you 

will conduct in Introductory Physics during the year. For each of these experiments, you will 
submit an individual written report. It is your responsibility to study The Student Lab Report 
Handbook thoroughly so that you can meet the expectations for lab reports in this course.

The instructions written here are given to help you complete your experiment success-
fully. However, your report must be written in your own words. This applies to all sections 
of the report. Do not copy the descriptions in this appendix into your report in place of 
writing your report for yourself in your own words.

C.2	 Lab Journals
You must maintain a proper lab journal throughout the year. Your lab journal con-

tributes to your lab grade along with your lab reports. Chapter 1 of The Student Lab Report 
Handbook contains a detailed description of the kind of information you should carefully 
include in your lab journal entries. The following are highlights from that description.

A good lab journal includes the following features:

1.	 The pages in the journal are quadrille ruled (graph paper) and the journal entries are 
in ink.

2.	 The journal is neatly maintained and free of sloppy marks, doodling, and messiness.

3.	 Each entry includes the date and the names of the team members present.

4.	 Every experiment and every demonstration that involves taking data or making obser-
vations is documented in the journal.

5.	 Entries for each experiment or demonstration include:

•	 the date

•	 the team members’ names

APPENDIX C
Laboratory Experiments
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•	 the team’s hypothesis

•	 an accurate list of materials and equipment, including make and model of any 
electronic equipment or test equipment used

•	 tables documenting all the data taken during the experiment, including the units 
of measure and identifying labels for all data

•	 all support calculations used during the experiment or in preparation of the lab 
report

•	 special notes documenting any unusual events or circumstances, such as bad data 
that require doing any part of the experiment over, unexpected occurrences or 
failures, or changes to your experimental approach

•	 little details about the experiment that need to be written in the report that you 
may forget about later

•	 important observations or discoveries made during the experiment

C.3	 Experiments

Experiment 1  The Pendulum Experiment

Variables and experimental methods

Essential equipment:

•	 string

•	 meter stick

•	 paper clip

•	 large steel washers

•	 clock with second hand

This investigation involves a simple pendulum. The experiment is an opportunity for you to 
learn about conducting an effective experiment. In this investigation, you learn about con-
trolling variables, collecting careful data, and organizing data in tables in your lab journal.

To make your pendulum, bend a large paper clip into a hook. Then connect the hook 
to a string, and connect the string to the end of a meter stick. Then lay the meter stick on a 
table with the pendulum hanging over the edge and tape the meter stick down. Finally, hang 
one or more large metal washers on the hook for the weight.

Your goal in this experiment is to identify the explanatory variables that affect the pe-
riod of a simple pendulum. A pendulum is an example of a mechanical system that oscil-
lates, that is, repeatedly “goes back and forth” in some regular fashion. In the study of any 
oscillating system, an important parameter is the period of the oscillation. The period is the 
length of time (in seconds) required for the system to complete one full cycle of its oscil-
lation. In this experiment, the period of the pendulum is the response variable you moni-
tor. (Actually, for convenience you monitor a slightly different variable, closely related to 
the period. This is explained on the next page.) After thinking about the possibilities and 
forming your team hypothesis, construct your own simple pendulum from string and some 
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weights and conduct tests on it to determine which variables affect its period and which 
variables do not.

In class, explore the possibilities for variables that may affect the pendulum’s period. 
Within the pendulum system itself there are three candidates, and your instructor will lead 
the discussion until the class has identified them. (We ignore factors such as air friction and 
the earth’s rotation in this experiment. Just stick to the obvious variables that clearly apply 
to the problem at hand.)

Then, as a team, continue the work by discussing the problem for a few minutes with 
your teammates. In this team discussion, form your own team hypothesis stating which 
variables you think affect the period. To form this hypothesis, you need not actually do any 
new research or tests. Just use what you know from your own experience to make your best 
guess.

The central challenge for this experiment is to 
devise an experimental method that tests only one ex-
planatory variable at a time. Your instructor will help 
you work this out, but the basic idea is to set up the 
pendulum so that two variables are held constant while 
you test the system with large and small values of the 
third variable to see if this change affects the period. 
You must test all combinations of holding two vari-
ables constant while manipulating the third one. All 
experimental results must be entered in tables in your 
lab journal. Recording the data for the different trials 
requires several separate tables. For each experimental 
setup, time the pendulum during three separate trials 
and record the results in your lab journal. Repeating the 
trials this way enables you to verify that you have valid, 
consistent data. To make sure you can tell definitively 
that a given variable is affecting the period, make the 
large value of the variable at least three times the small 
value in your trials.

Here is bit of advice about how to measure the period of your pendulum. The period of 
your pendulum is likely to be quite short, only one or two seconds, so measuring it directly 
with accuracy is difficult. Here is an easy solution: assign one team member to hold the 
pendulum and release it on a signal. Assign another team member to count the number of 
swings the pendulum completes, and another member as a timer to watch the second hand 
on a clock. When the timer announces “GO” the person holding the pendulum releases 
it, and the swing counter starts counting. After exactly 10.0 seconds, the timer announces 
“STOP” and the swing counter states the number of swings completed by the pendulum 
during the trial. Record this value in a table in your lab journal. If you have four team mem-
bers, the fourth person can be responsible for recording the data during the experiment. 
After the experiment, the data recorder reads off the data to the other team members as they 
enter the data in their journals.

This method of counting the number of swings in 10 seconds does not give a direct 
measurement of the period, but you can see that your swing count works just as well for 
solving the problem posed by this experiment, and is a lot easier to measure than the period 
itself. (The actual period is equal to 10 seconds divided by the number of swings that occur 
in 10 seconds.)
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One more thing on measuring your swing count: your swing counter should state 
the number of swings completed to the nearest 1/4 swing. When the pendulum is straight 
down, it has either completed 1/4 swing or 3/4 swing. When it stops to reverse course on 
the side opposite from where it is released, it has completed 1/2 swing.

When you have finished taking data, review the data together as a team. If you did the 
experiment carefully, your data should clearly indicate which potential explanatory vari-
ables affect the period of the pendulum and which ones do not. If your swing counts for 
different trials of the same setup are not consistent, then something is wrong with your 
method. Your team must repeat the experiment with greater care so that your swing counts 
for each different experimental setup are consistent.

Discuss your results with your team members and reach a consensus about the mean-
ing of your data. Expect to spend at least four hours writing, editing, and formatting your 
report. Lab reports count a significant percentage of your science course grades throughout 
high school, so you should invest the time now to learn how to prepare a quality report.

Your goal for this report is to begin learning how to write lab reports that meet all the 
requirements described in The Student Lab Report Handbook. One of our major goals for 
this year is to learn what these requirements are and become proficient at generating solid 
reports. Nearly all scientific reports involve reporting data, and a key part of this first report 
is your data tables, which should all be properly labeled and titled.

After completing the experiment, all the information you need to write the report 
should be in your lab journal. If you properly journal the lab exercise, you will have all  
the data, your hypothesis, the materials list, your team members’ names, the procedural 
details, and everything else you need to write the report. Your report must be typed and 
will probably be around two or three pages long. You should format the report as shown in 
the examples in The Student Lab Report Handbook, including major section headings and 
section content.

Here are a few guidelines to help you get started with your report:

1.	 There is only a small bit of theory to cover in the Background section, namely, to de-
scribe what a pendulum and its period are. You should also explain the experimental 
method, that is, why we are using the number of swings completed in 10 seconds in our 
work in place of the actual period. As stated in The Student Lab Report Handbook, the 
Background section must include a brief overview of your experimental method and 
your team’s hypothesis.

2.	 Begin your Discussion section by describing your data and considering how they relate 
to your hypothesis. In this experiment, we are not making quantitative predictions, so 
there are no calculations to perform for the discussion. We are simply seeking to dis-
cover which variables affect the period of a pendulum and which do not. Your goal in 
the Discussion section is to identify what your data say and relate that to your reader.

3.	 Consider the following questions as you write your discussion. What variables did you 
manipulate to determine whether they had any effect on the period of the pendulum? 
What did you find? According to your data, which variables do affect the period? How 
do the data show this? Refer to specific data tables to explain specifically how the data 
support your conclusion. Are your findings consistent with your hypothesis? If not, 
then what conclusion do you reach about the question this experiment seeks to answer?
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Experiment 2  The Soul of Motion Experiment

Newton’s second law of motion

Essential equipment:

•	 vehicle

•	 duct tape

•	 stop watch

•	 bathroom weigh scale (2)

Note: The report for this experiment requires you to set up a graph showing predicted and 
experimental curves on the same set of axes. Procedures for creating such a graph on a PC 
or Mac are described in detail in The Student Lab Report Handbook.

You will have a great time with this experiment. You meet out in the parking lot as a 
class. The idea is to push a vehicle from the rear, using scales that measure the force the 
pushers are applying to the vehicle. You time the vehicle as it accelerates from rest through 
a ten-meter timing zone and use the time data to calculate the experimental values of the 
vehicle’s acceleration. Using the mass of the vehicle and Newton’s second law, you calculate 
a predicted acceleration for each amount of pushing force used. Your goal is to compare 
your predicted accelerations to the experimental values of acceleration for four different 
force values. You then graph the results and calculate the percent difference to help you see 
how they compare. 

This experiment is an excellent example of how experiments in physics actually work. 
The scientists have a theory that enables them to predict, in quantitative terms, the outcome 
of an experiment. Then the scientists carefully design the experiment to measure the values 
of these variables and compare them to the predictions, seeking to account for all factors 
that affect the results. If the theory is sound and the experiment is well done, the results 
should agree well with the theoretical predictions and the percent difference should be low.

In our case, when a force is applied to a vehicle at rest, we expect the vehicle to acceler-
ate in accordance with Newton’s second law of motion:

a = F
m

This equation predicts that the accel-
eration depends on the force applied. So 
Newton’s second law is our theoretical 
model for the motion of an accelerating 
object. Now, we know that a motor ve-
hicle has a fair amount of friction in the 
brakes and wheel bearings, which means 
that not all the force applied by the push-
ers serves to accelerate the car. Some of 
it simply overcomes the friction. Also, 
if the ground is not be perfectly level, 
this affects the acceleration as well. So 
to make the model as useful as possible, 
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you must use the actual net force on the vehicle in your predictions. Details are discussed 
below.

For the data collection, you must have a way to measure the actual vehicle’s acceleration 
so that you can compare it to your predictions. You already know an equation that gives the 
acceleration based on velocities and time. However, you have no convenient way of measur-
ing the vehicle’s velocity. (The vehicle moves too slowly for the speedometer to be of any 
use.) Fortunately, there is another equation you can use if you time the vehicle with a stop 
watch as it starts from rest and moves through a known distance. If you know the distance 
and the time, and the acceleration is uniform, you can calculate the vehicle’s acceleration 
as follows:

a = 2d
t 2

Use this equation to determine the experimental acceleration value for each force, using the 
average time for each set of trials.

Here are some crucial details to help make this experiment as successful as possible:

1.	 Always have two students pushing on the vehicle. Thus, for each force value the push-
ers use, the total applied force is twice that amount. (You use four different force values 
in the experiment.)

2.	 Measure the friction on the vehicle so you can subtract it from the force the pushers are 
applying to get the net force applied for your predictions. To measure the friction, use 
one pusher and estimate the absolute minimum amount of force needed to keep the 
vehicle barely moving at a constant speed. As you know from our studies of the laws of 
motion, vehicles move at a constant speed when there is no net force. So if the vehicle is 
moving at a constant speed, it means that the friction and the applied force are exactly 
balanced. This allows you to infer what the friction force is.

3.	 Use four different values of pushing force. For each force value, time the vehicle over 
the ten-meter timing zone at least three times. The forces the pushers apply to the ve-
hicle always vary quite a bit, so if you get three valid trials at each force you have three 
reliable data points for the time. You then calculate the average of these times and use 
it to calculate the experimental value of the acceleration of the vehicle for that force.

4.	 The major factor introducing error into this experiment is the forces applied by the 
pushers. Pushing at a constant force while the vehicle is accelerating is basically im-
possible. (The dial on the force scale jumps all over the place.) But if the pushers are 
careful, they can push with an average force that is pretty consistent. You need a stan-
dard to judge whether you have had a successful run with consistent pushing. Here is 
the criterion to use: when you obtain three trials with time measurements all within a 
range of one second from highest to lowest, accept those values as valid. If your times 
are not this close together, assume that the pushing forces are not consistent enough 
and keep running new trials until you get more consistent data.

5.	 The instructor will take the vehicle, with a full gas tank, to get it weighed and report 
this weight to the class. Make sure to measure the weight of the driver and the weight 
of the scale support rack (if there is one). Add these weights to the weight of the vehicle 
and determine the mass for this total weight. (Of course, the instructor must also make 
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sure the gas tank is full on the day of the experiment, since the fuel in the tank typically 
amounts to 1–2% of the vehicle weight.)

Considerations for Your Report

In the Background section of your report, be sure to give adequate treatment to the 
theory you are using for this experiment. In the Newton’s second law equation, accelera-
tion is directly proportional to force, so a graph of acceleration vs. force should be linear. In 
the Background, you should use this concept to explain why you expect your experimental 
acceleration values to vary in direct proportion to the force. Explain the equations you are 
using to get the predicted and experimental acceleration values. Since you are using two 
different equations, your Background section should include explanations for both of them 
and why they are needed. The force you are using to make your predictions takes friction 
into account. You need to explain how friction is taken into account, why you are doing so, 
and how this relates to the equations.

In the Procedure section, don’t forget the important details, such as how you measured 
the friction force, weighed the driver, and judged the validity of your time data.

In the Results section, present all time data in a single table, along with the average 
times for the trials at each force value applied by the pushers. Present all the predicted val-
ues, experimental values, and percent differences (see Preface, pages xviii–xix) in another 
table or two. Do not forget to state all the other values used in the experiment, such as the 
vehicle weight, the weights of the driver and support rack, the distance, the total mass you 
calculate, and the friction force you measure. As The Student Lab Report Handbook de-
scribes, in any report, all the data collected must be presented, and they all must be placed 
either in a table or in complete sentences.

In the Discussion, the main feature is a graph of acceleration vs. force, showing both 
the predicted and experimental values on the same graph for all four force values. Carefully 
study Chapter 7 on graphs in The Student Lab Report Handbook and make sure your graph 
meets all the requirements listed.

Table C.1. Summary of equations for the calculations.

Variable Equation Comments

force net force = 
(2 × force for each pusher) – friction force 
estimate

There are four values of net 
force, one for each set of trials.

predicted 
acceleration

predicted accel =
(net force)/(total mass)

Net force is as calculated 
above. Mass is determined 
from the total weight. There is a 
predicted acceleration for each 
value of net force.

experimental 
acceleration

experimental accel =
(2 × distance)/(avg time)2

Distance is the length of the 
timing zone. Average time is 
the average of the three valid 
times for a given trial. There is 
an experimental acceleration for 
each value of net force.
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For your predicted values of acceleration, use the total mass of the vehicle, driver, and 
support rack. The instructor will tell you the weight of the vehicle, which you record in your 
lab journal. Also record the weights of the driver and support rack determined during the 
experiment. Convert the total weight from pounds to newtons, then determine the mass in 
kilograms by using the weight equation, Fw = mg.

For the force values in your predictions, use the nominal amount of force applied (the 
two pushers’ forces combined) less the amount of force necessary to overcome the friction 
(which is determined during the experiment).

Table C.1 summarizes the calculations you need to perform for each set of trials.
The heart of your discussion is a comparison of the two curves representing accelera-

tion vs. force (displayed on the same graph), and a discussion of how well the actual values 
of acceleration match up with the predicted values. In addition to this graphical compari-
son, compare the four predictions to the four experimental acceleration values by calculat-
ing the percent difference for each one, presenting these values in a table and discussing 
them.

To compare the curves, think about the questions below. Do not write your discus-
sion section by simply going down this list and answering each question. (Please spare 
your instructor the pain of reading such a report!) Instead, use the questions as a guide to 
the kinds of things you should discuss and then write your own discussion section in your 
own words. Remember—this is an exercise in learning how to write a well-constructed lab 
report, not a boring fill-in-the-blank activity.

Thought Questions and Considerations for Discussion

1.	 Are both the curves linear? What does that mean?

2.	 Do they both look like direct proportions? What does that imply?

3.	 Do the curves have similar slopes? What does that imply?

4.	 How successful are the results? A percent difference of less than 5% for an experiment 
as crude as this can be considered a definite success. If the difference is greater than 5%, 
identify and discuss the factors that may have contributed to the difference between 
prediction and result. In this experiment, there are several such factors, including wind 
that may have been blowing on the vehicle.

5.	 Do not make the mistake of merely assuming that the fluctuation in the pushers’ forces 
explains everything without taking into account the precautions you took to eliminate 
this factor from being a problem (the time data validity requirement).

6.	 Also do not make the mistake of assuming that friction explains the difference between 
prediction and result. Friction can only affect the data one way (slowing the vehicle 
down). So if friction is a factor, the data have to make sense in light of how friction af-
fects the data. But further, since measuring friction and taking it into account in your 
predictions is part of your procedure, a generic appeal to friction will not do.

7.	 Finally, do not make the mistake of asserting that errors in the timing or the timing 
zone distance measurement explain the difference between prediction and result. Con-
sider just how large the percentage error could realistically be in these measurements, 
and whether that kind of percentage helps at all in explaining the difference you have 
between prediction and result. For example, the timing zone is 10 m long. If it is care-
fully laid out on the pavement, it is unlikely that the distance measurement is in error 
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by more than a centimeter or so. Even including the slight misalignments of the vehicle 
that crop up, the distance could probably not be off by more than, say, 10 or 20 cm. But 
this is only 1–2% of 10 m, and if you are trying to explain a percent difference of 5–10% 
or more this won’t do it. Similar considerations apply to the time values. Given the slow 
speed the vehicle moves, how far off can the timing be? What kind of percentage error 
would this produce?

Alternate Experimental Method

If your class is using digital devices such as the PASCO Xplorer GLX to read forces, you 
can use a slightly different experimental method that improves results and lowers the dif-
ference between prediction and result. One of the major sources of error in this experiment 
is the difficulty the pushers have in accurately applying the correct amount of force to the 
vehicle. If you use bathroom scales to measure the force, there is nothing that can be done 
about this problem and the pushers simply have to do the best they can.

However, with the digital devices you can eliminate the problem of force accuracy by 
using the actual average values of the forces applied by the two pushers to calculate the 
predicted values. The Xplorer GLX can record a data file of the applied force during a given 
trial, and when reviewing the data file back at your computer you can view the mean value 
of the force during the trial. You can use this mean value to calculate the predicted accel-
eration from Newton’s second law. Using this method to form your predictions eliminates 
much of the uncertainty surrounding the forces applied to the car.

Here are a few details to consider if you use this alternative approach to collecting data:

1.	 You do not need to select four different force values in advance and push the vehicle 
repeatedly at each force value. Instead, only a single trial is needed for each force.

2.	 Select 10 or 12 different target force values and run a single trial with each. The force 
targets should range from low values that barely get the vehicle to accelerate, all the 
way up to the highest values the pushers can deliver. For each trial, tell the pushers the 
target force and tell them to do their best to stay on it during the trial. But it doesn’t 
matter nearly so much how accurate the pushers are because you are using the average 
of the actual data from the digital file to make the predictions, rather than relying on 
the pushers to maintain the target force accurately.

3.	 The method for determining values of net force for the predictions is similar to that 
shown in Table C.1. The difference is that instead of doubling the target force for each 
pusher, you add together the actual mean forces obtained from the data files for each 
pusher and subtract out the friction force.

4.	 Use the time of each trial to determine the experimental value of the acceleration for 
that trial.

5.	 Calculate the percent difference for each trial and report these values in the report. 
Also calculate the average of the percent difference values and use this figure in your 
discussion of the results.




