
Apologia Educational Ministries, Inc. is proud to 
present its advanced physics course. In order to take 
this course, the student must have already completed 
a high school physics course such as Exploring Creation 
With Physics. These two courses combined represent 
one full year of trigonometry-based college physics. 

Student Comments 
“I have been taking your advanced physics, and I think it 
is great!” 

“I have thoroughly enjoyed your advanced physics, and I 
am seriously considering the study of sciences as a major 
in college.” 

“You explain things so well in this course. I am amazed 
that I understand physics at this level!” 
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Module #1: Units and Vectors Revisited 
 

Introduction 
 

 There are probably no concepts more important in physics than the two listed in the title 
of this module.  In your first-year physics course,  I am sure that you learned quite a lot about 
both of these concepts.  You certainly did not learn everything, however.  Whether we are 
talking about units or vectors, there is simply too much information to possibly learn in just one 
year.  As a result, we will take another look at both of these concepts in this first module.  This 
will help you “warm up” to the task of recalling all of the things you learned in your first-year 
physics course, and it will help you to learn both of these valuable concepts at a much deeper 
level. 

Units Revisited 
 

 Almost regardless of the physics course, units should be covered first, because a great 
deal of physics is based on properly analyzing units.  In your first-year course, you were taught 
how to solve problems such as the one in the following example: 
 
 

EXAMPLE 1.1 
 

A sample of iron has a mass of 254.1 mg.  How many kg is that? 
 
 In this problem, we are asked to convert from milligrams to kilograms.  We cannot do 
this directly, because we have no relationship between mg and kg.  However, we do know that a 
milligram is the same thing as 0.001 grams and that a kilogram is the same thing as 1,000 grams.  
Thus, we can convert mg into g, and then convert g into kilograms.  To save space, we can do 
that all on one line: 
 

2541
1

0 001
1

1
1 000

0 0002541 2 541 10 4. .
,

. .mg g
mg

kg
g

kg kg× × = = × −  

 
The sample of iron has a mass of 2.541 x 10-4 kg.   
 
 
Did this example help dust the cobwebs out of your mind when it comes to units?  It should all 
be review for you.  I converted the units using the factor-label method.  Because this is a 
conversion, I had to have the same number of significant figures as I had in the beginning, and 
even though it was not necessary, I reported the answer in scientific notation.  If you are having 
trouble remembering these techniques, then go back to your first-year physics book and review 
them. 
 
 There are a couple of additional things I want you to learn about units.  I am not going to 
show you any new techniques; I am just going to show you new ways of applying the techniques 
that you should already know.   Consider, for example, the unit for speed.  The standard unit for 

TEXTBOOK
Module 1



2             Advanced Physics in Creation 

speed is 
m

sec
.  However, any distance unit over any time unit is a legitimate unit for speed.  

Since that is the case, we should be able to convert from one unit for speed to any other unit for 
speed.  Study the following example to see what I mean. 
 
 

EXAMPLE 1.2 
 

As of 2001, the record for the fastest lap at the Indianapolis 500 (“The greatest Spectacle in 
Racing”) was held by Arie Luyendyk.  He averaged a speed of 225.2 miles per hour over 
the entire 2.5-mile stretch of the Indianapolis speedway.  What is that speed in meters per 
second? 
 
 This problem requires us to make two conversions.  To get from miles per hour to meters 
per second, we must convert miles to meters.  Then, we must convert hours to seconds.  This is 
actually easy to do.  Remember, in miles per hour, the unit “miles” is in the numerator of the 
fraction and the unit “hours” is in the denominator.  Also remember that there are 1609 meters in 
a mile and that 1 hour is the same as 3600 seconds. 
 

225 2
1

1609
1

1
3600

100 7
.

sec
.

sec
miles

hr
meters

mile
hr meters

× × =  

 
Although there is nothing new here, you probably haven’t seen a conversion done in this way.  
Despite the fact that the unit for speed is a derived unit, I can still do conversions on it.  I could 
have just converted miles to meters and gotten the unit meters/hour.  I also could have  just 
converted hours to seconds and gotten miles/second.  In this case, however, I did both.  That 
way, I ended up with meters/second.  When working with derived units, remember that you can 
convert any or all units that make up the derived unit.  Thus, 225.2 miles per hour is the same 
thing as 100.7 meters per second.  Please note that although 3600 has only 2 significant figures, 
the number is actually infinitely precise, because there are exactly 3600 seconds in an hour.  
Thus, it really has an infinite number of significant figures.  This is why I say that the best rule of 
thumb is to always end your conversion with the same number of significant figures as that with 
which you started your conversion. 
 
 
 Okay, we are almost done reviewing units.  There is just one more thing that you need to 
remember.  Sometimes, units have exponents in them.  You were probably taught how to deal 
with this fact in your first-year physics course, but we need to review it so that you really know 
how to deal with it. 
 
 

EXAMPLE 1.3 
 

One commonly used unit for volume is the cubic meter.  After all, length is measured in 
meters, and volume is length times width times height.  The more familiar unit, however, is 
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Module 1: Units and Vectors Revisited           3 
 

cubic centimeters (cc) which is often used in medicine.  If a doctor administers 512 cc of 
medicine to a patient, how many cubic meters is that? 
 
 Once again, this is a simple conversion.  If, however, you do not think as you go through 
it, you can mess yourself up.  We need to convert cubic centimeters to cubic meters.  Now 
remember, a cubic centimeter is just a cm3 and a cubic meter is just a m3.  We have no 
relationship between these units, but we do know that 1 cm = 0.01 m.  That’s all we need to 
know, as long as we think about it.  Right now, I have the following relationship: 
 

1 cm  = 0.01 m 
 

This is an equation.  I am allowed to do something to one side of the equation as long as I do the 
exact same thing to the other side of the equation.  Okay, then, let’s cube both sides of the 
equation: 
 

( ) ( )1 0 01

1 0 000001

3 3

3 3

cm m

cm m

=

=

.

.

 

 
Now look what we have.  We have a relationship between cm3 and m3, exactly what we need to 
do our conversion! 
 

512
1

0 000001
1

512 10
3 3

3
4 3cm m

cm
m× = × −. .  

 
So 512 cc’s is the same as 5.12 x 10-4  m3.   
 
 
 
 When most students do a conversion like the one in the example without thinking, they 
simply use the relationship between cm and m to do the conversion.  That, of course does not 
work, because the cm3 unit does not cancel out, and you certainly don’t get the m3 unit in the 
end: 
 

512
1

0 01
1

512
3

2cm m
cm

m cm× = ⋅
. .  

 
Do you see what happened?  The cm unit canceled one of the cm out of cm3, but that still left 
cm2.  Also, since m is the unit that survives from the conversion relationship, you get the weird 
unit of m⋅cm2!  When you are working with units that have exponents in them, you need to be 
very careful about how you convert them.  At the risk of “beating this to death,” I want to 
combine the previous two examples into one more example. 
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4             Advanced Physics in Creation 

EXAMPLE 1.4 
 

The maximum acceleration of a certain car is 21,600 miles per hour2.  What is the 
acceleration in feet per second2? 
 
 Once again, this is a derived unit, but that should not bother you.  All we have to do is 
convert miles into feet and hours2 into seconds2.  There are 5280 feet in a mile, so that 
conversion will be easy.  We do not know a conversion between hours2 and seconds2, but we do 
know that: 
 

1 hour = 3600 seconds 
 

To get the conversion relationship between hours2 and seconds2, then, we just square both sides: 
 

(1 hour)2 = (3600 seconds)2 
 

1 hour2 = 1.296 x 107 seconds2 
 
Once again, please note that the conversion relationship between hours and seconds is exact.  
Thus, both numbers have an infinite number of significant figures.  That’s why I reported all 
digits when I squared 3600 seconds.   
 
 Now that I have the conversion relationships that I need, the conversion is a snap: 
 

21 600
1

5280
1

1
1296 10

8802

2

7 2 2

,
. sec

.
sec

miles
hr

ft
mile

hr
x

ft
× × =  

 
Notice once again that had I not squared the conversion relationship between hours and seconds, 
the units would not have worked out.  In order for hr2 to cancel, the unit hr2 had to be in the 
problem.  That’s why it is important to watch the units and make sure they cancel properly.   
 
 
 Make sure that you understand how to manipulate units this way by performing the 
following “on your own” problems. 
 
 

ON YOUR OWN 
 

1.1  The speed limit on many highways in the United States is 65 miles per hour.  What is the 
speed limit in centimeters per second?  (There are 1609 meters in a mile.) 
 
1.2  The size of a house is 1600 square feet.  What is the square yardage of the house? 
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Module 1: Units and Vectors Revisited           5 
 

1.3  The standard energy unit is the Joule (
kg m⋅ 2

2sec
).  An alternative energy unit is the erg  

(
g cm⋅ 2

2sec
).  I am serious.  It is called the erg!  Convert 151 Joules into ergs. 

 
 
 

A Review of Vectors 
 

In your first-year physics course, you learned about vectors.  A quantity is called a vector 
if it contains information about both magnitude and direction.  A quantity is called a scalar if it 
contains only information about magnitude and no information about direction.  For example, if I 
tell you that my car is moving at 55 miles per hour, I am giving you a scalar quantity.  The speed 
of the car tells you “how much” (magnitude), but it does not tell you in what direction the car is 
moving.  If I tell you that my car is moving at 55 miles per hour due west, then I am giving you a 
vector quantity.  Not only do you know how fast I am traveling (the magnitude), but you also 
know which way I am heading (the direction).  You should have already learned that we call the 
scalar quantity in this case speed, and we call the vector quantity velocity. 

 
Since vectors contain information about both magnitude and direction, we use arrows to 

represent them.  The length of the arrow represents the magnitude, while the direction in which 
the arrow points represents the direction.  When I refer to vectors, I will emphasize that they are 
vectors by placing them in boldface type.  For example, if you see “A” in an equation, you will 
know that it is a vector quantity because it is in boldface type.  If you see “A” in an equation, 
you will know that it is a scalar quantity because it is not in boldface type. 

 
Now although vectors and scalars are quite different, they can interact mathematically.  

For example, I can multiply a vector by a scalar. What happens if I do that?  Well, a vector 
contains information about magnitude and direction, while a scalar contains information only 
about magnitude.  If I multiply a vector by a scalar, then, the multiplication will affect the 
magnitude of the vector.  If the scalar happens to be negative, it does affect the direction of the 
vector as well.  Study the following figure to see what I mean. 

 
 

FIGURE 1.1 
Scalar Multiplication 

 
 
 
 
 
 
 
 
 

A 2⋅A ½ ⋅A -2⋅A 
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6             Advanced Physics in Creation 

 Notice in the figure that I start with an arrow which represents vector A.  It has a 
magnitude (the length of the arrow) and a direction (the direction in which the arrow points).  
When I multiply by 2 (a scalar), what happens?  The arrow points in the same direction, but it is 
twice as long.  That’s because when I multiply a vector by a positive scalar, I multiply its 
magnitude by the scalar, but I leave the direction alone.  Thus, the length of the arrow (the 
magnitude) changes, but the direction does not.  In the same way, when I multiply A by ½, the 
length of the arrow changes (it gets cut in half), but the direction does not. 
 
 Now look at the last arrow in the figure.  This arrow represents what happens to the 
vector A when I multiply by a negative scalar.  When you multiply a vector by a positive scalar, 
the direction of the vector does not change.  However, when you multiply by a negative scalar, 
the direction of the vector becomes opposite of what it once was.  Thus, when I multiply A by 
negative 2, the length of the vector increases by a factor of 2, but the vector also points in the 
opposite direction.  Vector A points towards the upper right hand corner of the figure, while the 
vector -2⋅A is twice as long and points to the lower left-hand corner of the figure. 
 
 When vectors are multiplied by scalars, then, the result is another vector.  As you already 
learned in your first-year physics course, vectors can not only be multiplied by scalars, but they 
can also be added to other vectors.  The result in that case is a vector as well.  To review how 
vectors are added to one another, however, we must first review the way that vectors can be 
mathematically represented. 
 

A two-dimensional vector can be mathematically represented in one of two ways.  It can 
be represented by its magnitude and an angle, or it can be written in terms of two perpendicular 
components.  Although any two perpendicular components can be used to define a two-
dimensional vector, we typically use horizontal and vertical components.  These two ways of 
mathematically representing a vector, as well as the relationships between them, are summarized 
in Figure 1.2. 
 
 

FIGURE 1.2 
A Two-Dimensional Vector 

 
 
 
 
 
 
 
 
 
 
 
 

 

horizontal 
component 
(Ax) 

vertical 
component 
(Ay) 

A 

horizontal (x) axis 

vertical  
(y) axis 

θ 

Mathematical Relationships 
Ax = A⋅cosθ 
Ay = A⋅sinθ 

tanθ = 
A
A

y

x
 

 A = A Ax y
2 2+  

Vector A can be written as: 
(1)  A (magnitude) and θ 
           or 
(2)  Ax and Ay 
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Module 1: Units and Vectors Revisited           7 
 

Notice, then, that the vector A can be represented with a magnitude (A) and a direction 
(θ).  For example, if I told you that there was buried treasure 10.5 miles away from your current 
location at an angle of 50.4o, I would be giving you a vector to describe the location of the 
treasure.  I would be giving you that vector in terms of its magnitude and angle.  Alternatively, I 
could tell you that to get to the treasure, you need to walk straight for 6.5 miles then turn left and 
walk another 8.1 miles.  That is also a vector which represents the location of the treasure, but 
the vector is given in terms of two components rather than a magnitude and direction.  Of course, 
since both methods represent the same vector, they should be related to one another.  The figure 
summarizes the various means by which the components of a vector relate to the vector’s 
magnitude and direction. 
  

Now we can move on to adding vectors.  In order to graphically add vectors, we simply 
put the tail of the second vector at the head of the first vector, and then we draw an arrow from 
the tail of the first to the head of the second.  The new arrow is the graphical representation of 
the final vector, which is the sum of the two original vectors.  Alternative, we can 
mathematically add vectors.  To do this, we simply add their x-components to get the final 
vector’s x-component, and we add their y-components to get the final vector’s y-component.  
These processes are summarized in Figure 1.3. 
 
 

FIGURE 1.3 
Adding Vectors 

 
 
 
 
 
 
 
 
 
 
 
 

 
On the left-hand side of the figure, two vectors (A and B) are drawn.  Their horizontal (x) 

components (Ax and Bx) as well as their vertical (y) components (Ay and By) are shown.  In the 
middle of the figure, the graphical method for adding vectors is shown.  To add vectors A and B, 
we put the tail of B on the head of A.  Then, we draw an arrow from the tail of A to the head of 
B.  The resulting arrow is the sum of A + B.  Notice that the figure also shows the graphical 
representation of B + A.  At first glance, you might think that the result of A + B is different than 
the result of B + A.   That’s not true.  Remember, a vector is determined by its magnitude and 
direction.  Both the result of A + B and the result of B + A have the same magnitude (length) and 
direction (they both point in the same direction).  Thus, they each represent the same vector.  
They are simply shifted relative to one another.   

 

A 

Ax 

Ay 

Bx 

By B 

A 
B 

C 

C = A + B 
C 

Adding the vectors graphically: Adding the vectors 
mathematially: 

Cx = Ax + Bx 

Cy = Ay + By 

Two original 
vectors - A and B: 

A 
B 

C = B + A  

C 
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8             Advanced Physics in Creation 

That brings up an important thing to remember about vectors.  They can be moved 
around without affecting their value.  As long as you do not change the length of the arrow or the 
direction in which the arrow points, you can move it all over the place without changing the 
meaning of the vector at all. 

 
Since physics is inherently a problem-solving science, the graphical approach to adding 

vectors is not enough.  It gives us a visual picture of the sum of vectors, but it does not give us 
any numbers with which to work.  Thus, we will mostly use the mathematical method for adding 
vectors, which is shown in the right hand portion of the figure.  To add two vectors 
mathematically, we simply add the horizontal components together.  This gives us the horizontal 
component of the final vector.  We then add the vertical components together, and that gives us 
the vertical component of the vector.  In the figure, then, the x-component of the final vector is 
simply Ax + Bx, while the y-component is simply Ay + By.  Let me go through a quick example 
problem to jog your memory on all of this. 

 
 
 

EXAMPLE 1.5 
 

An explorer is given directions on how to get to a particular place.  He is told to travel for 
15.2 miles at a heading of 30.0 degrees and then to turn and travel 30.4 miles at a heading 
of 170.2 degrees.  What is the vector which describes the explorer’s final position?  Solve 
this problem both graphically and mathematically. 
 
 Let’s start with the graphical method.  First, we have to figure out how to draw the first 
vector.  Well, the magnitude of the first vector (let’s call it A) is 15.2 miles.  The angle is 30.0 
degrees.  We can represent that vector as: 
 
 
 
 
 
 
 
 
Please realize that the drawing simply approximates the values of the vector to give us a visual 
idea of what it looks like.  We know that if the arrow pointed straight along the horizontal axis to 
the right, the angle would be 0 degrees.  If it pointed up along the vertical axis, the angle would 
be 90.0 degrees.  If it bisected those two, it would be pointing at 45 degrees.  An angle of 30.0 
degrees, then, is close to bisecting the two axes, but not quite. 
 
 Next, we put the tail of the second vector at the head of the first.  The second vector has a 
magnitude of 30.4 miles and an angle of 170.2 degrees.  Putting it on the head of the first vector 
gives us the following drawing: 
 
 

30.0o
A 
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Remember, if the vector pointed straight up, its angle would be 90.0 degrees.  If it pointed 
directly to the left, its angle would be 180.0 degrees.  Thus, an angle of 170.2 degrees points 
almost directly to the left, but just a little up.  In addition, the magnitude is twice that of the first 
vector, so the arrow is twice as long as the first.   
 
 Adding the vectors is now a snap.  We just draw an arrow from the tail of the first to the 
head of the second. 
 
 
 
 
 
 
 
The arrow labeled C represents the sum of the two vectors. 
 
 Now, although that gives us a picture of the vector which represents the explorer’s final 
position, it is only a picture.  To get numbers which describe this vector, we must add the two 
vectors mathematically.  To do that, we must get the horizontal and vertical components of each 
vector and add them together.  Figure 1.2 gives the relationships between the components of a 
vector and its magnitude and direction, so that’s not too bad: 
 

 
 Ax = (15.2 miles)⋅cos(30.0) = 13.2 miles 
 
 Ay = (15.2 miles)⋅sin(30.0) = 7.60 miles 
 
 Bx = (30.4 miles)⋅cos(170.2) = -30.0 miles 
 
 By = (30.4 miles)⋅sin(170.2) = 5.17 miles 
 
 
Notice that I used the rules of significant figures here.  If you have forgotten those rules, go back 
to your first-year physics course (or chemistry if you took that course) and review significant 
figures so that you understand why I rounded the answers where I did. 
 
 To get the x-component of the sum (vector C), we just add the two x-components 
together, and to get the y-component of the sum, we just add the two y-components together. 

30.0o

30.0o

170.2o

170.2o

A 

B 

A 

B 

C 
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 Cx = Ax  +  Bx  =  13.2 miles  +  -30.0 miles = -16.8 miles 

 
 Cy = Ay  +  By  = 7.60 miles + 5.17 miles = 12.77 miles  
 
In this case, I had to add numbers, and the significant figure rules are different for addition and 
subtraction as compared to multiplication and division.  Make sure you remember the difference! 
 
 The answer, then, is that the explorer’s position has an x-component of -16.8 miles and a 
y-component of 12.77 miles.  This means the explorer is 16.8 miles left (west) of his starting 
position and 12.77 miles up (north) from his starting position. 
 
 
 Before I leave this review, there is one more important thing of which I must remind you.  
When dealing with the angle associated with a vector, you need to define the angle 
counterclockwise from the positive x-axis, as shown in the example above.  If you define the 
angle in that way, the mathematics will always work.  Thus, if you find yourself working with a 
vector whose angle is not defined in that way, change the angle so that it is defined properly. 
 
 If you have the components of a vector and need to get its magnitude and its angle, you 
can use the equations given in Figure 1.2.  Remember, however, that the angle needs to be 
defined counterclockwise from the positive x-axis.  How can you be sure it is defined properly 
when working with those equations?  Well, remember from algebra that you can divide the 
Cartesian coordinate plane into four regions: 
 
 
 
 
 
 

 
When taking the inverse tangent of a number, the definition of the angle that your calculator 
gives you depends on which of these regions the vector is in.  If the vector is in region I, the 
angle that your calculator gives you is defined relative to the positive x-axis, just as it should be 
defined.  Thus, if your vector is region I, the angle that your calculator gives you for the inverse 
tangent function will be defined properly. 
 
 However, if the vector is in region II of the Cartesian coordinate plane, then the angle 
that your calculator gives you is defined relative to the negative x-axis and is negative.  In the 
Cartesian coordinate system, negative angles mean clockwise rotation while positive angles 
mean counterclockwise rotation.  So, when a vector is in region II, your calculator gives you the 
number of degrees clockwise from the negative x-axis.  Thus, if your vector is in region II and 
your calculator gives you a direction of -60 o, this is what it means:

I 

IV 

II 

III 
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This definition of angle is not proper for our purposes.  As a result, we must convert it to the 
proper definition.  It turns out that in both regions II and III of the Cartesian coordinate plane, if 
you simply add 180 to the angle that your calculator gives you, you will have converted your 
calculator’s answer to an answer in which the angle is defined properly.  If the vector is in region 
IV, then you must add 360 to the calculator’s answer in order to get the properly defined angle. 
 
 In summary, Figure 1.4 tells you what you must do in order to change your calculator’s 
answer into a properly defined vector angle, based on the region of the Cartesian coordinate 
system: 
 
 

FIGURE 1.4 
Converting reference angle to vector angle 

 
 
 
 
 
 
 
 
 This figure, of course, does you no good if you can’t tell what region of the Cartesian 
coordinate plane your vector is in.  Luckily, however, this is not a difficult task.  All you have to 
do is look at the signs on the vector components.  If the x-component and y-component are both 
positive, then the vector must be in region I.  After all, a positive x-component indicates that you 
are to the right of the origin, while a positive y-component means you are above the origin.  The 
region that is both to the right and above the origin is region I.  On the other hand, suppose that 
both components are negative.  Since a negative x-component means left of the origin and a 
negative y-component means down, you must be in region III, since that is the only region that is 
to the left and below the origin.  See how you do this?  Following the same logic, if the x-
component is negative and the y-component is positive, you must be in region II.  If the x-
component is positive and the y-component is negative, however, you must be in region IV. 
  
 I want to make sure you understand this by showing you a quick example. 
 
 
 

EXAMPLE 1.6 
 

What are the magnitude and direction of vector C in the previous example? 

do 
nothing

+360.0 

+ 180.0

+180.0

θ  = -60o
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 In the previous example, C had an x-component of -16.8 miles and a y-component of 
12.77 miles.  Getting the magnitude is simple, given the equation in Figure 1.2. 
 

C C C miles miles milesx y= + = − + =2 2 2 2168 12 77 211( . ) ( . ) .  
 
Getting the angle is a bit more difficult, because it must be defined properly.  When we use the 
equation in Figure 1.2, we get: 
 

θ =
−

= −−tan (
.

.
) .1 12 77

168
37 2

miles
miles

o  

 
Now that we have an answer, we must figure out the region of the vector.  It has a negative x-
component (and is therefore left of the origin) and a positive y-component (and is therefore 
above the x-axis).  Thus, it is in region II.  According to Figure 1.4, then, we must add 180.0 to 
it.  The properly-defined angle, then, is 142.8o.  Thus vector C can also be represented as 21.1 
miles at an angle of 142.8o. 
 
 

I went through all of this rather quickly, but it should be review for you.  You really 
should have learned all of this in your first-year course.  Thus, if all of this seems a bit “fuzzy” to 
you, go back and review your first-year physics course.   
 
 
 

ON YOUR OWN 
 
1.4  The velocity vector of a car has an x-component of 23 m/sec and a y-component of 11 
m/sec.  What are the magnitude and direction of the velocity vector? 
 
1.5  Vector  A has a magnitude of 3.1 m/sec at an angle of 60.0 degrees, and vector B has a 
magnitude of 1.4 m/sec at an angle of 290.0 degrees.  What is the sum of these two vectors?  
Give your answer both graphically and in terms of magnitude and direction. 
 
 
 

Unit Vectors 
 

 Everything in the previous section should be review for you, and that’s why I went 
through it so quickly.  However, I now want to introduce some notation that may be new for you.  
Since a two-dimensional vector can be represented in terms of its horizontal and vertical 
components, it is nice to actually define two unit vectors – one in the horizontal direction and 
one in the vertical direction.  A unit vector, as shown in the figure below, has a magnitude of 1 
and a direction along either the horizontal (x) or vertical (y) axis.

TEXTBOOK
Module 1



Module 1: Units and Vectors Revisited           13 
 

 
FIGURE 1.5 

Two Unit Vectors 
 
 
 
 
 
 
 
 
 
 
 

 Why do I bother to define these vectors?  Think about it.  I can define any vector in terms 
of a horizontal component and a vertical component.  Well, suppose I multiply vector i by a 
scalar.  What will happen to the magnitude of the vector?  Well, since the original magnitude is 
1, the new magnitude will be equal to the value of the scalar.  What about the direction?  Well, 
unless the scalar is negative, the direction will not change.  If the scalar is negative, the direction 
will simply be reversed.  The vector 3⋅i, for example, has a magnitude of 3 and points 
horizontally to the right.  The vector -5⋅j, on the other hand, has a magnitude of 5 and points 
vertically down. 
 
 So what?  Think about the fact that we can define a vector by its horizontal and vertical 
components.  Suppose velocity vector A has a horizontal component of 5 m/sec (Ax = 5 m/sec) 
and a vertical component of -4 m/sec (Ay = -4 m/sec).  We could write that in terms of adding 
unit vectors: 
 

A = (5 m/sec)⋅i  +  (-4 m/sec)⋅j 
 

After all, if the x-component is 5 m/sec, then the x-component points to the right and has a 
magnitude of 5.  That’s what 5⋅i is.  If the y-component is -4 m/sec, then the y-component points 
down with a magnitude of 4 m/sec.  That’s what -4⋅j means.  In the end, then, we can also note 
any vector in terms of unit vectors: 
 

For any vector A,   A = Ax⋅i  +  Ay⋅j                                          (1.1) 
 

This is one of the standard ways in which vectors are expressed, so it is important that you 
understand it. 
 
 

EXAMPLE 1.7 
 

The acceleration vector of an airplane is 123 m/sec2 at θθ = 223.2o.  Express the vector in 
terms of unit vectors.  Draw a graph of the vector. 

Vector j: 
j = 1, θ = 900 
jx = 0, jy = 1 

Vector i: 
i = 1, θ = 00 
ix = 1, iy = 0 
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 To express a vector in terms of unit vectors, we must have its horizontal and vertical 
components.  Thus, we must convert magnitude and direction into components: 
 

A
m m

A
m m

x
o

y
o

= ⋅ = −

= ⋅ = −

(
sec

) cos( . ) .
sec

(
sec

) sin ( . ) .
sec

123 2232 89 7

123 2232 84 2

2 2

2 2

 

 
Now that we have the components, we just multiply i by the x-component and j by the y-
component, and we can express the vector in terms of unit vectors: 

 

A i j= − ⋅ + − ⋅89 7 84 22 2.
sec

( .
sec

)
m m

 

 
Usually, if the vector j is multiplied by a negative, we just replace the plus sign with a minus 
sign, so the more standard answer is: 
 

A i j= − ⋅ − ⋅89 7 84 22 2.
sec

.
sec

m m
 

  
 Now remember, the numbers multiplying i and j are simply the components of the vector.  Thus, 
drawing the vector is a snap: 
 
 
 
 
 
 
 
 
 
 
 Now remember that to add any two vectors, you simply add the x-components together 
and the y-components together.  Similarly, to subtract vectors, you simply subtract the x-
components and the y-components.  In this notation, then, vector addition and subtraction is as 
follows: 
 

A  +  B  =  (Ax + Bx)⋅i  +  (Ay + By)⋅j                                  (1.2) 
 

A  -  B   =  (Ax - Bx)⋅i   +   (Ay - By)⋅j                                  (1.3) 
 

-89.7 
m/sec2 

-84.2 
m/sec2 A 
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We can also express scalar multiplication in this notation.  When I multiply a vector by a scalar, 
I can simply multiply each component by the scalar.  Thus, in this notation, scalar multiplication 
becomes: 

k⋅A  =  (k⋅Ax)⋅i  +  (k⋅Ay)⋅j        (where k is a scalar)      (1.4)  
 

Make sure you understand this new notation by solving the following problems. 
 
 

ON YOUR OWN 
 
1.6  Draw the vector A = (5.0 m)⋅i  - (11 m)⋅j.  Give its magnitude and direction. 
 
1.7  What is the sum of vector A above with vector B = (-11 m)⋅i  +  (22 m)⋅j?  What is the 
difference A - B?  Answer using the notation you learned in this section of the module. 
 
1.8  Write (in unit vector notation) the vector which corresponds to 6 times the vector  
C = (2.0 m/sec)⋅i  +  (3.0 m/sec)⋅j. 
 
 

The Dot Product 
 

 When we add or subtract two vectors, the result is a vector.  When we multiply a vector 
by a scalar, the result is also a vector.  Thus, you might think that when you mathematically 
manipulate vectors, the result is always a vector.  That’s not true.  One mathematical 
manipulation is called the dot product, and it is important in physics.  When you compute the 
dot product of two vectors, the result is a scalar. 
 
 How can two vectors produce a scalar?  Well, first let’s look at the mechanics of taking 
the dot product of two vectors, and then I will tell you what the dot product really means. 
 

A • B  =  Ax⋅Bx  +  Ay⋅By                                             (1.5) 
 

In order to compute the dot product of two vectors, I multiply their x-components together and 
add that result to the product of their y-components.  Notice that there are no vectors on the right 
hand side of the equation, so the result is, indeed, a scalar. 
 
 

EXAMPLE 1.8 
 

Given the following vectors: 
 
A =  14⋅i  +  11⋅j  
B =  -2.0⋅i  + 3.0⋅j 
 
Compute the dot product A •• B. 
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Using Equation (1.5): 
 

A • B  =  Ax⋅Bx  +  Ay⋅By 
 

A • B  =  14⋅(-2.0)  +  11⋅3.0  =  -28  +33  =  5 
 

The dot product, then, equals 5. 
 
 
 Computing the dot product between two vectors isn’t too bad, is it?  Of course, being 
able to perform a mathematical operation is not the same as understanding what that 
mathematical operation means.  Thus, you also need to know the meaning behind the dot 
product.  When you take the dot product of two vectors, you are really multiplying the 
magnitude of the first vector by the component of the second vector which is parallel to the first 
vector.  Now I know that sentence is confusing, so I want to try and explain it with a figure. 
 
 

FIGURE 1.6 
The Meaning of the Dot Product 

 
 
 
 
 
 
 
 
 
 
 
 

 Start by looking at the drawing on the left-hand side of the figure.  I have two vectors 
there, our old friends A and B.  If you put their tails together (remember, moving vectors around 
is okay as long as you don’t change length or direction), you can define θ, the angle between 
them.  Now we already know that any two-dimensional vector can be expressed in terms of two 
perpendicular components.  We usually use the horizontal and vertical components, but that’s 
not necessary.  We can really use any two perpendicular components.  For the purpose of this 
discussion, then, let’s define B in terms of a component that is parallel to A and one that is 
perpendicular to A.  That’s what is shown on the right hand side of the figure. 
 
 Now look what happens when you split up B into those two components.  One 
component lies right on vector A.  That’s the parallel component of vector B, and it is calculated 
by taking the magnitude of the vector (B) and multiplying by the cosine of the angle (θ).  Thus, 
that little section labeled B⋅cosθ is the component of vector B that lies parallel to vector A. 
 

A 

B 

θ 

A

B 

θ 

B⋅cosθ 

B⋅sinθ 

Two vectors, 
A and B: 

Vector B can be split into 
two perpendicular 
components: one that is 
parallel to A and one that 
is perpendicular to A: 

A•B = A[Bcos(θ)] 
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 When you take the dot product, you are calculating the value of the magnitude of vector 
A multiplied by the length of the component of vector B which lies parallel to A.  That’s why the 
last line of text in the figure says that the dot product is A (the magnitude of vector A) times 
Bcosθ (the length of the component of B which is parallel to A).  This is actually another way of 
expressing the dot product: 
 

A • B  =  A⋅B⋅cosθ                                                 (1.6) 
 

The dot product of two vectors, then, can be found one of two ways.  If you know the 
components of the vector, you use Equation (1.5).  If you know the magnitudes of each vector 
and the angle between them, use Equation (1.6).  Alternatively, if you know the dot product and 
magnitudes of the vectors, you can determine the angle between them.  See what I mean by 
studying the following example. 
 
 
 

EXAMPLE 1.9 
 

Given the following vectors: 
 
A = 12i  +  6.0j 
B = -3.0i  +  9.0j 
 
Determine the angle between the vectors. 
 
 To get an idea of just what we are solving for, let’s draw the two vectors with each tail at 
the origin.  This is not a necessary step for solving the problem.  It simply gives us a visual of the 
angle. 
 
 

 
 
 
 
 

How do we determine the angle?  Well notice that we have the components of each vector.  
Thus, we can determine the magnitude of each.  Also, we can determine the dot product using 
Equation (1.5).  Once we have that, then we can solve for the angle using Equation (1.6). 
 
 Let’s start with the magnitudes of each vector.  That’s not too hard: 
 

A

B

= + =

= − + =

12 6 0 13

30 9 0 9 5

2 2

2 2

.

. . .

 

θ 
A B 
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Now let’s figure out the dot product.  Since we have the components, we use Equation (1.5): 
 

A•B  =  12⋅(-3.0)  +  6.0⋅9.0  =  18 
 

At this point, we have all of the information in Equation (1.6) except the angle, so we can solve 
for it: 
 

A B• = ⋅ ⋅

= ⋅ ⋅

=
⋅





 = =− −

A B

o

cos

. cos

cos
.

cos ( . )

θ

θ

θ

18 13 9 5

18
13 9 5

015 821 1

 

 
The angle, then, is 82o.  Look back at the drawing of the two vectors.  Notice that the angle looks 
very close to a right angle.  Thus, the answer we have makes sense based on the drawing. 
 
 
 

ON YOUR OWN 
 

1.9  Compute the dot product of the following vectors:  A  =  (-2.3 m)⋅i  -  (1.2m)⋅j, 
B  =  (1.2 m)⋅i  +  (4.3 m)⋅j. 
 
1.10  Two vectors, A and B, are defined.  The angle between them is 61.0o.  Vector A has a 
magnitude of 15.1 meters, and the component of B which is parallel to A is 1.2 meters long.  
What is the magnitude of vector B? 
 
 
 

The Physical Significance of the Dot Product 
 

 In the last section, you learned how to compute the dot product of two vectors and what 
that means mathematically.  However, this is a physics course.  It might be nice to learn a new 
math concept, but this is not a math course.  Thus, I would not have taught you about the dot 
product unless there was some physics behind it. 
 
 To learn the physics behind the dot product, you need to recall the concept of work from 
your first-year physics course.  Do you remember how we define work mathematically?  Try to 
see if this doesn’t jog your memory: 
 

W  =  F||⋅x                                                            (1.7) 
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In this equation, “W” represents work , “x” stands for the displacement over which the force was 
applied, and “F||” is used to indicate the component of the force vector that is parallel to the 
direction of motion.  
 
 To remember why Equation (1.7) uses only that portion of the applied force that is 
parallel to the motion, consider Figure 1.7. 
 
 

FIGURE 1.7 
Force and Work 

 

                             
 

In the left side of this figure, a boy is pulling a wagon.  If we remove the picture of the boy (right 
side of the figure) and just look at the vectors involved, we see several things.  First, the wagon 
travels in a straight, horizontal line, as indicated by the horizontal velocity vector (v).  The force 
that the boy is applying (F) goes in the same direction as the wagon’s handle.  As a result, his 
pulling force is not parallel with the motion.  Since the force is a two-dimensional vector, we can 
split it into vertical (Fy) and horizontal (Fx) components.  The horizontal component is parallel to 
the motion and, as you can see, is the only portion of the force that contributes to the motion.  In 
contrast, there is no motion in the perpendicular direction.  In other words, the wagon is not 
moving upwards.  In the end, the perpendicular portion of the force fights gravity.  Since it is not 
strong enough to overcome gravity, the wagon does not move up.  Remember, when a force is 
applied but there is no motion, there is no work.  Thus, the perpendicular component of the boy’s 
pulling force is wasted.  It causes no motion, and therefore it accomplishes no work.  That’s why 
only the portion of the force parallel to the motion is considered when calculating the work done 
by that force. 
 
 
 So, when you are faced with a situation in which you must calculate the work done by a 
force which takes place over a certain displacement, you can use Equation (1.7).  Wait a minute, 
however.  Equation (1.7) tells you to take the magnitude of one vector (the displacement vector, 
x), and multiply it by the magnitude of the component of another vector (the force vector, F) 
which is parallel to the first vector.  What does that sound like?  It sounds like the dot product!  
Thus, we can re-write the definition of work in dot product notation: 
 

W  =  F••x                                                           (1.8) 
 

⇒

v 

F 

Fx 

Fy 

Illus. from Arts and Letters Express
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Now remember, work is a scalar.  It doesn’t tell us anything about direction.  That makes sense, 
since the result of the dot product is a scalar.   
 
 If you have been paying close attention, there may be something puzzling you at this 
point.  In the dot product, we take the magnitude of the first vector, and multiply it by the 
magnitude of the component of the second vector which is parallel to the first vector.  Thus, if I 
were to really write Equation (1.7) in dot product form, it should read W=x•F.  However, look at 
Equation (1.6).  This equation tells us that the dot product is commutative.  After all,  
 

A•B  =  A⋅B⋅cosθ 
 

B•A  =  B⋅A⋅cosθ 
 

Notice that A⋅B⋅cosθ and B⋅A⋅cosθ are equivalent.  Thus, A•B and B•A are equivalent.  Thus, 
the order in which you take the dot product does not matter.   
 

The dot product is commutative:  A••B is the same as B••A 
 

This is important and worth remembering. 
 
 Now that you know the physical significance of the dot product, solve the following “on 
your own” problems. 
 
 

ON YOUR OWN 
 

1.11  A particle undergoes a displacement x = (1.5 m)⋅i - (2.3 m)⋅j while being acted upon by a 
constant force F = (5.6 N)⋅i - (3.4 N)⋅j.  What is the work done? 
 
1.12  A person applies a force of 16.6 Newtons to an object as the object travels 9.2 meters.  If 
the work done was 14.5 J, what was the angle between the force vector and the displacement 
vector? 
 
 

The Cross Product 
 
 The dot product of two vectors produces a scalar.  It only makes sense that if there is a 
way to multiply two vectors to produce a scalar, there must be a way to multiply two vectors to 
produce a vector.  Indeed, there is.  We call it the cross product.  In the cross product, we are 
still multiplying the magnitude of one vector with the magnitude of another vector.  In this case, 
however, we are multiplying the magnitude of the first vector with the component of the second 
vector which is perpendicular to the first vector.  In addition to using a different component of 
the second vector, the cross product also produces a vector, not a scalar.  Thus, the cross product 
has both magnitude and direction.  Let’s deal with the magnitude first. 
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FIGURE 1.8 
The Magnitude of the Cross Product 

 
 
 
 
 
 
 
 
 

 
 
 Once again, we have our old friends vector A and vector B.  They can be drawn tail-to-
tail, and the resulting angle between them is called θ.  If we split vector B into two components: 
one parallel to A and one perpendicular to A, we find that the perpendicular component is 
B⋅sinθ.  Thus, since the cross product involves multiplying the magnitude of the first vector and 
the magnitude of the component of the second vector which is perpendicular to the first, the 
magnitude of the cross product is: 
 

|A x B|  = A⋅B⋅sinθ                                                       (1.9) 
 

 
The vertical lines enclosing A x B simply mean “magnitude.”  Thus, “|A x B|” means “the 
magnitude of the vector A x B.” 
 
 So that’s how we get the magnitude of the cross product.  The cross product produces a 
vector, however, so there is also direction to consider.  How do we come up with the direction of 
the cross product?  We use something called the right hand rule. 
 
   Right hand rule - To determine the direction of the cross product A x B, take your right hand 

and point your fingers in the direction of A.  Then, curl your fingers towards 
B, along the arc of the angle between the vectors.  Your thumb will then 
point in the direction of the cross product 

 
The right hand rule is illustrated in Figure 1.9. 
 
 

 

A 

B 

θ 

A 

B 

θ 

B⋅cosθ 

B⋅sinθ 

Two vectors, 
A and B: 

Vector B can be split into 
two perpendicular 
components: one that is 
parallel to A and one that 
is perpendicular to A: 

|A x B| = A[Bsin(θ)] 
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FIGURE 1.9 

The Right hand Rule 

 
 
 

 When determining the direction of the cross product, then, you take your right hand and 
point your fingers in the direction of the first vector.  Then, you curl your fingers towards the 
second vector, along the arc of the angle between them.  Your thumb will then point in the 
direction of the cross product.  Think about what this means for a moment. 
 

The direction of the cross product of two vectors will always be perpendicular to both 
vectors. 

 
The right hand rule has another implication.  Look at Figure 1.9 and use the right hand rule to 
determine the direction of B x A.  Remember, you point the fingers on your right hand in the 
direction of the first vector (B), and you then curl towards the second vector (A).  Where does 
your thumb point?  It points down towards the paper.  That’s the opposite direction as that 
shown in the figure.  Thus, unlike the dot production, the cross product is not commutative. 
 

The cross product is not commutative: A x B = -(B x A) 
 

This is important to remember. 
 
 Okay, there is one more thing you need to learn about the cross product.  You need to 
know how to calculate the cross product using unit vector notation.  However, before you can do 
that, you need to see how we define unit vectors in three-dimensional space.   
 
 
 
 

Illus. By Megan Whitaker 
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FIGURE 1.10 

Three-Dimensional Space in Terms of Unit Vectors 
 
 
 
 
 
 
 
 
 
 

When we add another dimension (the z-axis), we can represent that in unit vector notation with 
just another unit vector.  Notice that i is still the unit vector in the horizontal direction and j is 
still the unit vector in the vertical direction.  To represent three-dimensional space, then, we 
simply add a third unit vector, k, which points out of the plane of the paper, towards you.  If we 
multiply by -1, the unit vector -k points behind the paper. 

 
 Now that you know how three-dimensional space is represented in vector notation, you 
can learn how we compute the cross product.  First, let’s start with the simple case of two-
dimensional vectors.  
 

For two-dimensional vectors in the i/j plane:  A x B  =  (Ax⋅By - Ay⋅Bx)⋅k             (1.10) 
 

Notice the restriction placed on this equation.  To use this equation, you must be taking the cross 
product of two-dimensional vectors which exist only in the plane defined by the horizontal (i) 
and vertical (j) axes.  Thus, this is a pretty restrictive equation.  However, most of the physics 
problems that you do will involve such vectors, so it is probably what you will use most often for 
calculating cross products. 
 
 For completeness sake, I will give you the total equation for calculating the cross product 
between any three-dimensional vectors: 
  

A x B  =  (Ay⋅Bz-Az⋅By)⋅ i  +  (Az⋅Bx - Ax⋅Bz)⋅j  + (Ax⋅By - Ay⋅Bx)⋅k           (1.11) 
 
Notice that Equation (1.11) reduces to Equation (1.10) for two-dimensional vectors in the i/j 
plane.  After all, the z-component of such a two-dimensional vector is zero.  Thus, the term 
(Ay⋅Bz-Az⋅By)⋅ i is zero, as is the term (Az⋅Bx - Ax⋅B z)⋅j.  As a result, the only term in the 
equation that is non-zero is (Ax⋅By - Ay⋅Bx)⋅k, and that gives us Equation (1.10). 
 
 I know that this is a lot to throw at you, but hopefully the following example problems 
will clear up any confusion that may still be in your mind. 
 
 
 

i 

j 

k 
x 

y 

z 
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EXAMPLE 1.10 

 
A velocity vector has a magnitude of 56.1 m/sec and an angle of 45.0 degrees.  Another 
velocity vector has a magnitude of 12.2 m/sec and an angle of 290.1 degrees.  Calculate the 
magnitude of the cross product and give the vector in unit vector notation. 
 

Calculating the magnitude of the cross product is not bad at all.  We just use Equation 
(1.9).  To do that, however, we need the angle between the vectors.  To determine that we will 
have to draw the two vectors: 

 
 
 
 
 
 
 
 

 
If the angle of the second vector as defined from the positive x-axis is 290.1, then the angle from 
the positive x-axis down to the vector must be 69.9o, because the total angle must be 360.0o.  
Well, the angle from the positive x-axis up to the first vector is 45.0o.  The angle between the 
two vectors, then, must be 69.9o + 45.0o = 114.9o.   Now we can use Equation (1.9):  

 
|A x B|  = A⋅B⋅sinθ = (56.1 m/sec)⋅(12.2 m/sec)⋅sin(114.9o) = 621 m2/sec2 

 
The magnitude of the cross product, then, is 621 m2/sec2.   
 

What about the direction?  For that, we use the right hand rule.  We point the fingers of 
our right hand in the direction of the first vector, then we curl along the arc of the 114.9o angle in 
between the vectors.  When we do that, our thumb points down into the page.  Thus, the vector is 
in the negative k direction.  That tells us what we need to know for unit vector notation.  After 
all, we know the vector’s magnitude (621 m2/sec2), and we know that it is pointed in the negative 
k direction.  Thus, the vector is -(621 m2/sec2)⋅k. 

 
 

Given the following vectors, calculate A  x  B and determine the angle between the vectors: 
 

A  =  3.4⋅i  +  4.5⋅j  
B  =  2.4⋅i  +  1.1⋅j 

 
 Notice that these two vectors are two-dimensional and have only i and j unit vectors.  
Thus, they are in the i/j plane, and we can use the simpler version of the cross product equation, 
Equation (1.10): 
 

 

45.0o290.1o

360.0o - 290.1o = 69.9o
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A x B  =  (Ax⋅By - Ay⋅Bx)⋅k 
 

A x B  =  [3.4⋅1.1 - 4.5⋅(2.4)]⋅k  =  -7⋅k 
 

That’s the cross product.  Based solely on the unit vector notation, you know that it is pointing 
behind the plane of the paper.  What about the angle?  Well, we now know the magnitude of the 
vector (if the vector is composed solely of 7 times k, then the magnitude is 7, because k has a 
magnitude of 1), so we can use Equation (1.9): 
 

|A x B|  = A⋅B⋅sinθ 
 

Remember, “|A x B|” means “magnitude of A x B,” so that’s 7.  We don’t have the magnitudes 
of A and B, but we can use their components to calculate them: 
 

A

B

= + =

= + =

34 4 5 56

2 4 11 2 6

2 2

2 2

. . .

( . ) . .
 

 
Now we can use Equation (1.9): 
 

o1 30
)6.2()6.5(

7sin

sin)6.2()6.5(7

sinBA|BxA|

=







⋅

=θ

θ⋅⋅=

θ⋅⋅=

−

 

 
 
Given the following vectors, calculate the cross product and the angle between them: 
 

A = -1.4⋅i  +  4.2⋅j -  5.6⋅k  
B  =  2.4⋅i  -  1.1⋅j + 3.2⋅k 

 
 This is essentially the same as the problem above.  However, these are three-dimensional 
vectors, so we have to use the larger formula, Equation (1.11): 
 
         A x B  =  (Ay⋅Bz-Az⋅By)⋅ i  +  (Az⋅Bx - Ax⋅Bz)⋅j  + (Ax⋅By - Ay⋅Bx)⋅k 

 
A x B  =  (4.2⋅3.2-[-5.6]⋅[-1.1])⋅ i  +  (-5.6⋅2.4 - [-1.4]⋅3.2)⋅j  + ([-1.4]⋅[-1.1] - 4.2⋅2.4)⋅k 

 
         A x B  =  7⋅ i  -  9⋅j  - 9⋅k 
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 Just as we did before, we can calculate the magnitudes of the two vectors and then 
determine the angle between them using Equation (1.9).  The only difference now is that the 
magnitude of the cross product is not as easy to determine.  We must calculate it like we 
calculate the magnitudes of all vectors: 

 

15)9()9(7|BxA|

1.42.31.14.2B

1.7)6.5(2.4)4.1(A

222

222

222

=−+−+=

=++=

=−++−=

 

 
Now that we have all of the magnitudes involved, we can use Equation (1.9): 
 

o1 31
)1.4()1.7(

15sin

sin)1.4()1.7(15

sinBA|BxA|

=







⋅

=θ

θ⋅⋅=

θ⋅⋅=

−

 

 
 

ON YOUR OWN 
 

1.13  Vector A is defined as 3.2 feet at 45.0o, and vector B is defined as 1.1 feet at 70.1o.  What 
is the cross product?  Give your answer in unit vector notation. 
 
1.14 Given the following vectors, calculate the cross product and the angle between them: 
 

A = -7.1⋅i  +  4.2⋅j  
B  =  3.4⋅i  -  4.1⋅j  

 
 

The Physical Significance of the Cross Product 
 

 As was the case with the dot product, there is physical significance to the cross product.  
We will apply the cross product in at least three different areas of physics, but for right now, I 
will concentrate on only one: the concept of torque.  As you learned in your first-year physics 
course, when we apply a force some distance away from an axis of rotation, the result is a torque, 
which can cause rotational motion.  In your first-year physics course, you learned the equation 
used to calculate torque. 

τ  =  F⊥⋅r                                                       (1.12) 
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Where “τ” represents torque, “r” represents the magnitude of the vector drawn from the axis of 
rotation to the point at which the force is applied, and “F⊥” represents the component of the force 
which is perpendicular to that vector.  Figure 1.11 illustrates the concept of torque. 
 
 
 

FIGURE 1.11 
Torque 

 
 
 
 
 

 Now remember what torque is.  It is the counterpart of force when one is considering 
rotational motion.  Remember, force causes acceleration in a straight line.  Torque causes 
rotational acceleration.  In the figure, the wrench is going to turn the screw.  To do that, it will 
have to give the screw rotational acceleration so that it starts to turn in a circle.  Torque is the 
impetus which will cause that rotational acceleration.   
 
 Notice from the figure that only a portion of the force used can generate torque.  Any 
component of the force that is parallel to the vector defined from the axis of rotation to the point 
at which the force is applied (the lever arm) is lost.  Thus, the magnitude of the torque is given 
by the magnitude of the lever arm times the component of the force which is perpendicular to the 
lever arm. 
 
 Well, since the cross product takes the magnitude of a vector and multiplies it by the 
magnitude of a second vector’s component which is perpendicular to the first vector, torque can 
be calculated using the cross product. 

 
                                                             (1.13) 

 
There are two things to note about this equation.  First, torque is a vector.  Remember, the cross 
product results in a vector.  That’s why the “ττ” is bold.  Second, remember that the cross product 

F 

F|| 

F⊥ 

lever arm 

Illus. by Megan Whitaker 
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is NOT commutative.  Thus,  the order of the vectors is important, so one must take the vector of 
the lever arm (r) and cross it with the vector representing the force (F), in that order. 
  
 Since you already know how to do cross products, calculating the torque is pretty easy.  
Thus, I will not give you any examples of it.  However, you should perform the following “on 
your own” problems to make sure you understand how to use the cross product to calculate 
torque. 
 
 

ON YOUR OWN 
 
1.15  A person applies a force F = (15 N)⋅i + (23 N)⋅j on a lever arm r = (1.2 m)⋅⋅i + (1.1 m)⋅j.  
What is the vector that represents the torque? 
 
1.16  A man is trying to turn a bolt.  He exerts a force of 15.2 N with a pipe that creates a lever 
arm which is 0.36 m long.  If the plumber succeeds in producing 4.9 N⋅m of torque, what is the 
angle between the force he is exerting and the wrench?  Given the diagram below, is the torque 
pointing up above the plane of the paper or back behind the plane of the paper? 
 

   
 
 

Summing Up 
 

This module contained some concepts which were review for you and others which were 
new.  That will be the case with most of the modules in this course.  In each module, I will 
review some of the highlights of your first-year physics course and then go deeper into each 
subject.  In addition, completely new concepts will be brought in from time to time.  Thus, if 
there is something that really baffles you in this course, you should review your first-year course 
to see if it is explained there. 

 

r 

F 
θ Illus. By Megan Whitaker 
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ANSWERS TO THE ON YOUR OWN PROBLEMS 
 

1.1  To solve this problem, we simply have to convert miles to centimeters and hours to seconds.   
It doesn’t matter that they are both a part of our original unit.  As long as we use the factor-label 
method, everything will work out: 
 

65
1

1609
1

1
0 01

1
3600

2900
miles
hour

m
mile

cm
m

hour
s

cm
s

× × × =
.

 

 
Notice that I converted from miles to meters and then meters to centimeters.  I had to do that, 
since I was not given a direct relationship between miles and centimeters.  Sixty-five miles per 
hour is the same as 2900 cm/s. 
 
1.2  We can’t use the conversion of 3 feet in 1 yard right away, because we want to convert from 
square feet into square yards.  Thus, we need a relationship between those quantities.  We can 
get such a relationship by squaring both sides of the relationship that we do have: 
 
            3 ft  =  1 yd 

 
9 ft2  =  1 yd2 

 
Now we can do the conversion: 
 

1600
1

1
9

180
2 2

2
2ft yd

ft
yd× =  

 
The house has an area of 180 square yards.  If your answer was 177.8, go back and review 
significant figures from your first-year course. 
 

1.3  To convert from Joules (
kg m⋅ 2

2sec
) to ergs  (

g cm⋅ 2

2sec
), I need to convert kg into g and m2 into 

cm2.  That’s not bad.  We know that 1 kg = 1,000 g.  We also know: 
 

1 cm = 0.01 m 
 

To get the relationship between cm2 and m2, we just square both sides: 
 

1 cm2 = 0.0001 m2 
 

This leads us to: 
 

151
1

1 000
1

1
0 0001

151 10
2

2

2

2
9

2

2

kg m g
kg

cm
m

g cm⋅
× × = ×

⋅
sec

,
.

.
sec
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1.4  In this problem, we are given the x- and y-components of a vector and are asked to calculate 
its magnitude and direction.  Getting the magnitude is not too bad: 
 

Magnitude V V
m m m

x y= + = + =2 2 2 223 11 25(
sec

) (
sec

)
sec

 

 
To get the angle, we start with this equation: 
 

θ = = =− −tan ( ) tan ( sec

sec

)1 1
11

23
26

V
V

m

m
y

x

o

 
 

We aren’t necessarily finished yet, however.  We have to determine which region of the 
Cartesian coordinate system that the vector is in.  Since both its components are positive, this 
tells us that the vector is to the right and above the origin, which means that the vector is in 
region I.  According to our rules, we don’t need to do anything to the result of the equation when 
the vector is in region I, so 26o is the proper angle.  Thus, the vector has magnitude of 25 m/sec 
and direction of 26o. 
 
1.5   In this problem, we are asked to add two-dimensional vectors together.  Before we do this 
mathematically, let’s do it graphically: 
 
 
 
 
 
 
 
 
 
As we learned before, the dotted arrow (vector C) gives us the sum.   
 
 The first step in adding vectors mathematically is to break both vectors down into their 
components: 
 

                                          

A
m m

A
m m

x
o

y
o

= ⋅ =

= ⋅ =

( .
sec

) cos( . ) .
sec

( .
sec

) sin ( . ) .
sec

31 60 0 16

31 60 0 2 7

 

A B
C
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B
m m

B
m m

x
o

y
o

= ⋅ =

= ⋅ = −

( .
sec

) cos( . ) .
sec

( .
sec

) sin ( . ) .
sec

14 290 0 0 48

14 290 0 13

 

 
Now that we have the individual components, we can add them together.  
 

C   =   A   +   B   =   1.6  
m

sec
  +   0.48  

m
sec

  =   2.1  
m

sec

C   =   A   +   B   =   2.7  
m

sec
  +   -1.3  

m
sec

  =   1.4  
m

sec

x x x

y y y

 

 
Now that we have the components to our answer, we can get the magnitude and direction of the 
sum.   
 

Magnitude C C
m m m

x y= + = + =2 2 2 22 1 14 2 5( .
sec

) ( .
sec

) .
sec

 

 
 

θ = = =− −tan ( ) tan (
.

sec

.
sec

)1 1
14

21
34

C
C

m

m
y

x

o  

 
Since the x- and y-components are both positive, the vector is in the first region of the Cartesian 
coordinate plane.  This is consistent with the graphical answer we drew to begin with, and it 
means that we do not need to do anything to the result the equation.  Thus, the sum of vectors A 
and B has a magnitude of 2.5 m/sec at a direction of 34o. 
 
 
1.6  To draw the vector, we simply need to realize that the number multiplying i is the x-
component and the number multiplying j is the y-component. 
 
 
 
 
 
 
 
 
 
 

11 m 

5.0 m 

A 
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To get the magnitude and direction, we just use the formulas in Figure 1.2. 
 

A A A m m m

m
m

x y

o

= + = + − =

=
−






 = −−

2 2 2 2

1

5 0 11 12

11
50

66

( . ) ( )

tan
.

θ

 

 
Now remember, the angle may not be defined correctly at this point.  Based on the components, 
we see that this vector is in region IV of the Cartesian coordinate plane.  Thus, we must add 
360.0o to it.  Thus, the answer is 12 m at a direction of 294o. 
 
1.7  To add vectors, we add the x-components and y-components.  In unit vector notation, the 
formula is given by Equation (1.2): 
 
A  +  B  =  (Ax + Bx)i  +  (Ay + By)j  =  (5 m  + -11 m)i  +  (-11 m + 22m)j  =  (-6 m)i  +  (11 m)j 

 
The difference is given by Equation (1.3): 
 
 A  -  B   =  (Ax - Bx)i   +   (Ay - By)j  =  (5 m - -11m)i  +  (-11 m - 22 m)j  = (16 m)i  -  (33 m)j 
 
1.8  In unit vector notation, scalar multiplication is given by Equation (1.2): 
 

kA  =  (kAx)i  +  (kAy)j   
 

6C  =  (6x2.0 m/sec)i  +  (6x3.0 m/sec)j  =  (12 m/sec)i  +  (18 m/sec)j 
 
1.9  Using Equation (1.5): 
 

        A • B  =  Ax⋅Bx  +  Ay⋅By 
 

A • B  =  (-2.3 m)⋅(1.2 m)  +  (-1.2 m)⋅(4.3 m)  =  -8.0  m2 
 

The dot product, then, equals -8.0 m2.  What does the minus sign mean?  Well, remember, the 
dot product is the product of the magnitude of A and the magnitude of the component of B 
parallel to A.  If that product is negative, it means the component of B parallel to A is negative.  
That means the component of B parallel to A points opposite of A.  Draw the two vectors to see 
what I mean: 
 
 
 
 
 

Component of B parallel to A 
points in the opposite direction 
compared to A.  Thus, compared 
to A, it is negative.  This leads to 
a negative dot product. 

A 
B 
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1.10  This problem requires you to understand that the dot product A•B is the magnitude of A 
times the magnitude of the component of B which lies parallel to A.  You are given those two 
things, so you can compute the dot product: 
 

A B A B A

A B

• = ⋅

• = ⋅ =

( ) ( )

( . ) ( . )

magnitude of magnitude of the component of parallel to

m m m151 12 18 2

 

 
Now that we have the dot product, we can solve Equation (1.6) for the magnitude of B. 
 

 
A B• = ⋅ ⋅

= ⋅ ⋅

=
⋅

=

A B

m m B

B
m

m
m

o

o

cos

( . ) cos( . )

( . ) cos( . )
.

θ

18 151 610

18
151 610

2 5

2

2

 

 
1.11  This is a straightforward application of Equation (1.8): 
 

 W  =  F • x  =  (5.6 N)⋅(1.5 m)  +  (3.4 N)⋅(2.3 m)  =  16.2 N⋅m  =  16.2 J 
 

Remember from your first-year course that a N⋅m is the standard unit for energy or work, and 
that unit is called the Joule in honor of James Prescott Joule. 
 
1.12  Remember, work is the dot product of F and x.  Thus,  
 

W = F⋅x⋅cosθ 
 

In this problem, we have all of the variables except θ, so we can solve for it: 
 

W F x

J N m

= ⋅ ⋅

= ⋅ ⋅

cos

. ( . ) ( . ) cos

θ

θ14 5 16 6 9 2
 

 

θ =
⋅

⋅






 =−cos

.
( . ) ( . )

1 14 5
16 6 9 2

85
N m

N m
o  

 
Notice that in the last line, I replaced the unit Joule with its definition, N⋅m, to show that the 
units cancel out.  Remember, when dealing with a trigonometric function, the argument should 
have no units.  Thus, any units in the problem need to fully cancel, as they do above. 
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1.13   To calculate the magnitude of the cross product, we just use Equation (1.9).  To do that, 
however, we need the angle between the vectors: 

 
 
 
 
 
 
 
 

 
This angle is easy, it’s just 70.1o - 45.0o  =  25.1o.   Now we can use Equation (1.9):  

 
|A x B|  = A⋅B⋅sinθ = (3.2 feet)⋅(1.1 feet)⋅sin(25.1o) = 1.5 feet2 

 
To determine direction, we use the right hand rule.  We point the fingers of our right hand 

in the direction of the first vector, then we curl along the arc of the 25.1o angle in between the 
vectors.  When we do that, our thumb points up out of the page.  Thus, the vector is in the 
positive k direction.  That tells us what we need to know for unit vector notation.  Thus, the 
vector is (1.5 feet2)⋅k. 

 
 
1.14  Notice that the vectors are two-dimensional and have only i and j unit vectors.  Thus, we 
can use the simpler version of the cross product formula, Equation (1.10): 

 
A x B  =  (Ax⋅By - Ay⋅Bx)⋅k 

 
A x B  =  [(-7.1)⋅(-4.1) - 4.2⋅3.4]⋅k  =  15⋅k 

 
That’s the cross product.  What about the angle?  Well, we just need the magnitudes of all three 
vectors and Equation (1.9).  The magnitude of the cross product is easy; it’s just 15.  What about 
A and B?  

A

B

= − + =

= + − =

( . ) ( . ) .

( . ) ( . ) .

71 4 2 8 2

34 41 53

2 2

2 2
 

 
Now we can use Equation (1.9): 
 

45.0o

70.1o
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| | sin

( . ) ( . ) sin

sin
( . ) ( . )

.

A Bx A B

x o

= ⋅ ⋅

= ⋅ ⋅

=
⋅





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=−

θ

θ

θ

15 8 2 53

15
8 2 53

2 0 101 1

 

 
Notice that I had to put the answer in scientific notation.  The rules indicate that I must have 2 
significant figures.  The number 20 has only 1 significant figure.  Thus, I had to make that zero 
significant by putting the whole number in scientific notation. 
 
1.15   This is an easy one.  We are given the vectors for r and F, so we can just use Equation 
(1.13).  Since these are two-dimensional vectors in the i/j plane, we can use the simplified cross 
product formula, Equation (1.10). 
 

 
 

 
1.16   In this problem, we are dealing only with magnitudes.  Since we want to figure out the 
angle between the vectors, we are going to use Equation (1.9): 
 

| | sin

. ( . ) ( . ) sin

sin
.

( . ) ( . )

A Bx A B

N m m N

N m
m N

o

= ⋅ ⋅

⋅ = ⋅ ⋅

=
⋅
⋅







 =−

θ

θ

θ

4 9 0 36 152

4 9
0 36 152

641

 

 
To determine the direction, we use the right hand rule.  Point the fingers of your right hand from 
the nut to the hand.  That is along the lever arm.  Now, curl your fingers towards the force, along 
the arc of the angle between the lever arm and the force.  Your thumb should be pointed up away 
from the paper.  Thus, the torque points above the plane of the paper. 
 

 

TEXTBOOK
Module 1


