

2
LEVEL

apologia

EXPLORING CREATION WITH
MATHEMATICS

Kathryn Gomes

Click the section you want to preview.

TEXTBOOK

TABLE OF CONTENTS

UNIT 1

TEACHING GUIDE AND ANSWER KEY

TABLE OF CONTENTS

SUGGESTED DAILY SCHEDULE

UNIT 1

SUPPLY LIST

TABLE OF CONTENTS

Introduction to Exploring Creation
with Mathematics, Level 2 9

**Unit One: Number Sense
and Place Value** 11
Seeing Our Creator in Place Value 11
Chapter 1: Numbers and Patterns 15
 Lesson 1: Place Value Exploration 16
 Lesson 2: Place Value with Base
 Ten blocks 18
 Lesson 3: Expanded Form 22
 Lesson 4: Number Word Names 25
 Lesson 5: Comparing Numbers 29
 Lesson 6: Putting Numbers in Order 32
 Lesson 7: Even and Odd Numbers 35
 Lesson 8: Even and Odd Practice 39
 Lesson 9: More Even and Odd Practice ... 42

Chapter 2: Numbers to 1000 47
 Lesson 10: Finding Patterns as You
 Count to 100 48
 Lesson 11: Skip Counting by 2's, 5's,
 and 10's 50
 Lesson 12: Count to 1000 54
 Lesson 13: Tens and Hundreds 56
 Lesson 14: 3-Digit Numbers with
 Base Ten Blocks 59

Lesson 15: Model 3-Digit
Numbers Exploration 64

Lesson 16: 3-Digit Numbers in
Expanded Form 67

Lesson 17: Place Value to 1,000 69

Lesson 18: Word Names up to 1000 71

Lesson 19: 3-Digit Number Game 74

Lesson 20: 10 more, 10 less, 100
more, 100 less 76

Lesson 21: Compare Numbers
up to 1000 79

Lesson 22: Place Value Yahtzee 82

**Unit 2: Addition and Subtraction
with Two-Digit Numbers** 83

Seeing Our Creator in Addition 83

Chapter 3: Addition and
Subtraction within 20 85

 Lesson 23: Doubles Facts Plus or
 Minus One 86

 Lesson 24: Addition Facts Within
 10 Review 90

 Lesson 25: Make a 10 to Add 93

 Lesson 26: Add 3 Numbers 96

 Lesson 27: Subtraction Facts 100

 Lesson 28: Making 10 to Subtract 103

 Lesson 29: Addition and Subtraction
 are Related 105

Chapter 4: Going Deeper with Addition and Subtraction 109

Lesson 30: Adding Even and Odd Numbers 110
Lesson 31: Choosing the Best Subtraction Strategy 113
Lesson 32: The Bar Model 117
Lesson 33: The Bar Model (Part Two) 120
Lesson 34: The Bar Model (Part Three) 122
Lesson 35: Repeated Addition 126
Lesson 36: Equal Groups 128

Chapter 5: Adding Two-Digit Numbers 131

Lesson 37: Adding One-Digit Numbers to a Two-Digit Number 132
Lesson 38: Adding Two-Digit Numbers by Using Compensation 135
Lesson 39: Adding Two-Digit Numbers in Expanded Form 139
Lesson 40: Regrouping with Base Ten Blocks 144
Lesson 41: Adding Two-Digit Numbers in the Vertical Format 148
Lesson 42: Adding Two-Digit Numbers in the Vertical Format [More Practice] 150
Lesson 43: Adding Two-Digit Numbers in the Vertical Format [More Practice] 153
Lesson 44: Word Problem Workshop 156
Lesson 45: Adding 3 Two-Digit Numbers 159
Lesson 46: Adding 4 Two-Digit Numbers 163

Chapter 6: Subtracting Two-Digit Numbers 165

Lesson 47: Subtracting a One-Digit Number from a Two-Digit Number 166
Lesson 48: Two-Digit Subtraction with Number Lines 170
Lesson 49: Subtraction with Base Ten Blocks 173
Lesson 50: Subtraction with Base Ten Blocks (Part Two) 177
Lesson 51: Subtracting Using Expanded Form 179
Lesson 52: Subtracting in Expanded Form (Part Two) 184
Lesson 53: Subtraction with Regrouping in the Vertical Format 187
Lesson 54: Subtraction with Regrouping in the Vertical Format (Part Two) 191
Lesson 55: Subtracting Two-Digit Numbers in the Vertical Format [More Practice] 193
Lesson 56: Subtraction Word Problems 195
Lesson 57: Addition and Subtraction Word Problems with Bar Models 198
Unit 2 Project: Two-Digit Addition and Subtraction Posters 202

Unit 3: Money and Time 205

Seeing Our Creator in Time 205
Chapter 7: Money 207
Lesson 58: Coin Exploration 208
Lesson 59: Counting Up Coins 210

Lesson 60: Counting Up Coins [Part Two]	213
Lesson 61: Making Amounts in Different Ways	215
Lesson 62: The Dollar Bill	217
Lesson 63: Amounts Over One Dollar	219
Lesson 64: Shopping with Money	222
Chapter 8: Time	223
Lesson 65: Time to the Hour and Half Hour	224
Lesson 66: Time to 5 Minutes	226
Lesson 67: Time to 5 minutes [Part Two]	230
Lesson 68: A.M./P.M.	234
Unit 3 Project: Make Your Own Catalog	237
Unit 4: Addition and Subtraction with Three-Digit Numbers	239
Seeing Our Creator in BIG Numbers ..	239
Chapter 9: Adding Three-Digit Numbers	241
Lesson 69: Review Two-Digit Addition ..	242
Lesson 70: Adding Three-Digit Numbers with Base Ten Blocks	244
Lesson 71: Adding Three-Digit Numbers by Drawing	249
Lesson 72: Adding Three-Digit Numbers in Expanded Form	253
Lesson 73: Adding Three-Digit Numbers in the Vertical Format	259

Lesson 74: Adding Three-Digit Numbers in the Vertical Format [Part Two]	263
---	-----

**Chapter 10: Subtracting
Three-Digit Numbers** 265

Lesson 75: Subtracting Three-Digit Numbers with Base Ten Blocks	266
Lesson 76: Subtracting Three-Digit Numbers by Drawing	269
Lesson 77: Subtracting Three-Digit Numbers in the Vertical Format	275
Lesson 78: Subtracting Three-Digit Numbers in the Vertical Format [Part Two]	277
Lesson 79: Subtracting Three-Digit Numbers with Zeros	280
Lesson 80: Subtracting Three-Digit Numbers Mixed Review	287
Unit 4 Project: Plan Your Own Party ..	290

**Unit 5: Measurement
and Data** 293

Seeing Our Creator in Measurement ..	293
Unit 5 Project: Measuring Plant Growth (Part One)	295
Chapter 11: Measuring Length	297
Lesson 81: Rounding	298
Lesson 82: Inches	301
Lesson 83: Measuring in Inches with a Ruler	303
Lesson 84: Estimating Measurements in Inches	307
Lesson 85: Measurement Monsters ..	309

Lesson 86: Feet	311
Lesson 87: Estimating Measurements in Feet	313
Lesson 88: Comparing Measurements	316
Lesson 89: Measurement Word Problems	320
Chapter 12: Measuring Length with a Different System	323
Lesson 90: Centimeters	324
Lesson 91: Measuring in Centimeters with a Ruler	326
Lesson 92: Estimating Measurements in Centimeters	329
Lesson 93: Meters	330
Lesson 94: Comparing Measurements and Word Problems	332
Chapter 13: Data and Graphs	335
Lesson 95: Collecting Data	336
Lesson 96: Picture Graphs	339
Lesson 97: Bar Graphs	342
Lesson 98: Line Graphs	346
Unit 5 Project: Measuring Plant Growth (Part Two)	351
Unit Six: Geometry	353
Seeing Our Creator in Symmetry	353
Chapter 14:	355
Lesson 99: 3D Shape Exploration	356
Lesson 100: 3D Shape Attributes	359
Lesson 101: 2D Shapes	361
Lesson 102: Angles	365
Lesson 103: Symmetry	367
Lesson 104: Equal Parts	369
Lesson 105: Equal Parts Word Problems	371
Unit Six Project: Pizza Party!	273

NUMBER SENSE AND PLACE VALUE

Throughout history people used numbers to measure and record amounts. Different civilizations created their own written numbering systems. In Ancient Egypt they used symbols that look like pictures of animals or plants to represent numbers.

Egyptian Numeral Hieroglyphs						
	.getUrl('https://www.illustrativemath.com/secondary/grade3/images/301_hieroglyphs_10.gif')	getUrl('https://www.illustrativemath.com/secondary/grade3/images/301_hieroglyphs_100.gif')	getUrl('https://www.illustrativemath.com/secondary/grade3/images/301_hieroglyphs_1000.gif')	getUrl('https://www.illustrativemath.com/secondary/grade3/images/301_hieroglyphs_10000.gif')	getUrl('https://www.illustrativemath.com/secondary/grade3/images/301_hieroglyphs_100000.gif')	getUrl('https://www.illustrativemath.com/secondary/grade3/images/301_hieroglyphs_1000000.gif')
1	10	100	1,000	10,000	100,000	1,000,000

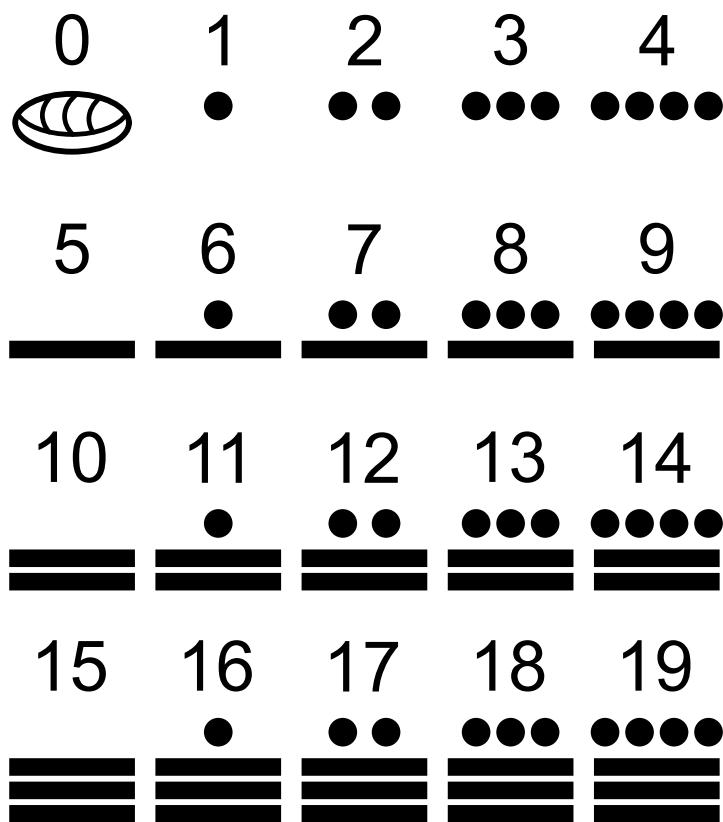
The Romans created a different system using letters to represent some numbers. You may have seen their numerals inscribed on older buildings or on clocks.

Roman Numerals											
1	2	3	4	5	6	7	8	9	10	50	100
I	II	III	IV	V	VI	VII	VIII	IX	X	L	C

Skills Practice for Unit One:

Facts from First Grade (see answer key page 14 for more details)

This clock uses Roman numerals to show the numbers 1 to 12.



The date on the Rockefeller Center says 1932 in Roman numerals.

Other civilizations, such as the Babylonians and Mayans, invented numbering systems that are a little closer to what we use today.

፩ 1	፪ 11	፫ 21	፬ 31
፪ 2	፫ 12	፬ 22	፭ 32
፫ 3	፬ 13	፭ 23	፮ 33
፬ 4	፭ 14	፮ 24	፯ 34
፭ 5	፮ 15	፯ 25	፰ 35
፮ 6	፯ 16	፰ 26	፱ 36
፯ 7	፱ 17	፲ 27	፲ 37
፱ 8	፲ 18	፳ 28	፳ 38
፲ 9	፳ 19	፴ 29	፴ 39
፳ 10	፴ 20	፵ 30	፵ 40

Can you see a repeating pattern in the Ancient Babylonian method?

Do you see a pattern in this Mayan numeral system? Do you also see that there is a symbol for zero?

The numbers we use today are represented by digits and the placement of the digits affects their value. This is called place value and we'll learn all about it this year. The positions in our current place value system look like this:

Place Value Chart

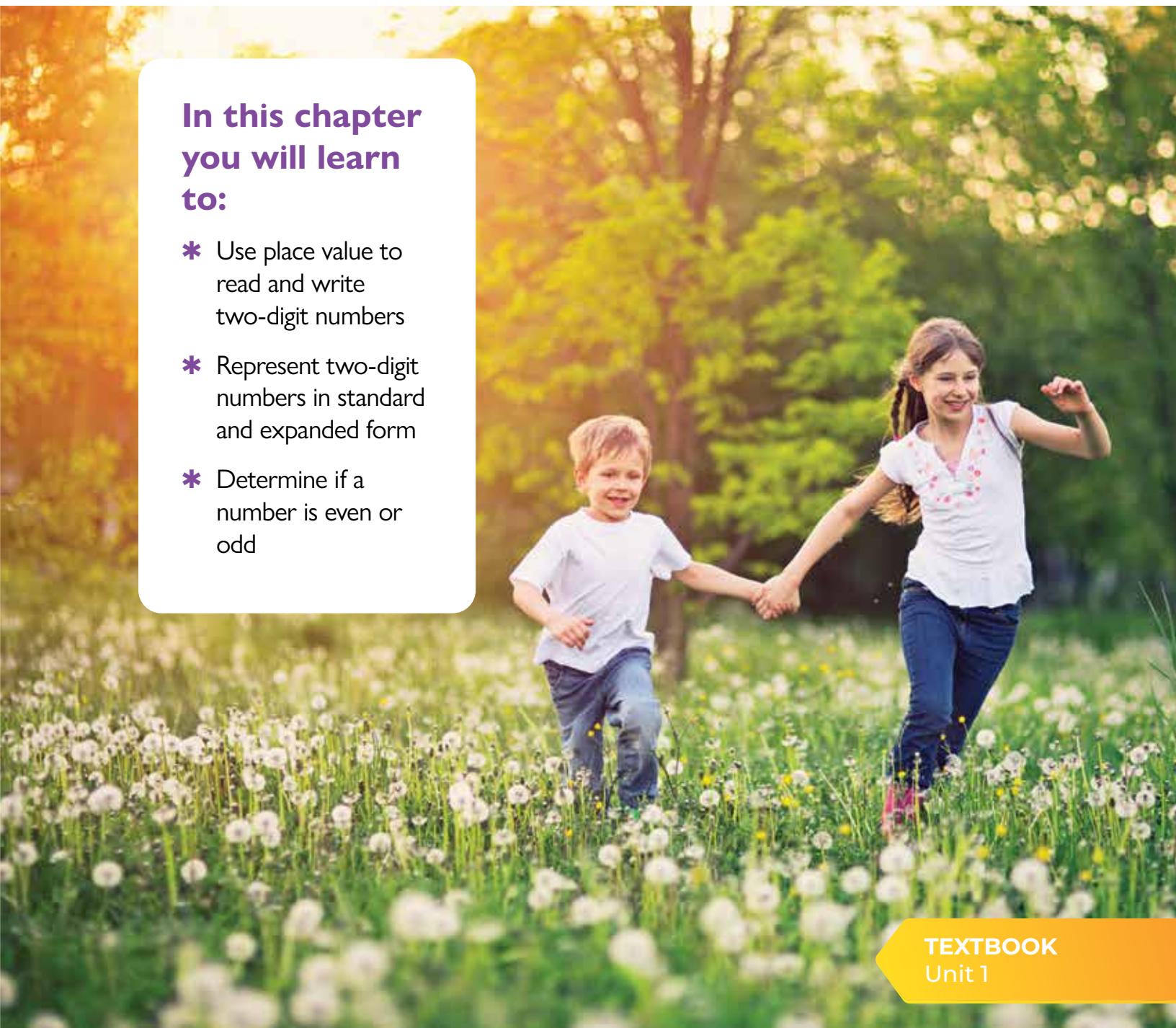
This system allows us to write numbers and perform operations much more easily. Which system do you think looks the easiest to learn?

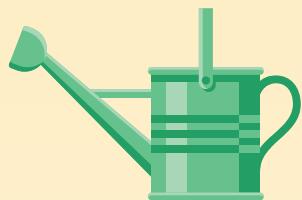
Numeral Systems			
Hieroglyphs	Roman Numerals	Ancient Babylonian	Place Value
Ϟ ፩፪፪፪፪	CCXLIV	❖❖	244

Humans have continued to develop different systems for writing numbers. We've even developed a system of numbers using only zeros and ones for use with computers.

Binary code is a numbering system that is used by computers. It only uses two digits, 1 and 0.

Of course, you already know that we still use some symbols in math. You've learned the following math symbols for plus (+), minus (-), equals (=), as well as others such as greater than (>) and less than (<). And you will continue to learn more math symbols in your math journey.


It's important to realize, however, that in all these examples humans just found different ways to record the amounts that God already put in His creation. We can create new systems for recording and manipulating numbers, but only God can create the numbers themselves.


CHAPTER**1**

NUMBERS AND PATTERNS

**In this chapter
you will learn
to:**

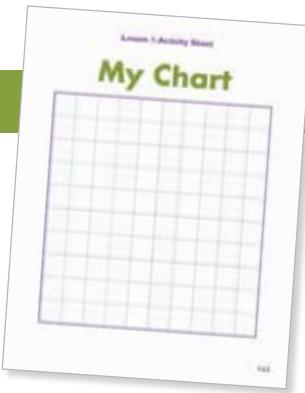
- * Use place value to read and write two-digit numbers
- * Represent two-digit numbers in standard and expanded form
- * Determine if a number is even or odd


PLACE VALUE EXPLORATION

You Will Need:

- Paper
- Pencil
- Timer
- Colored pencils (to be used later)
- Lesson 1 Activity Sheet (to be used later)

You Will Do:


1. Have your parent or a friend set the timer for one minute. Draw as many stars as you can on the piece of paper.
2. When the minute is up count up your stars.
3. Switch and have your parent or friend try while you time them. Who can draw the most? Record the winner in the space below.
4. Reflect. How did you count up the stars? Did you group them to help you keep track? Talk with your parent about what you did.

Practice

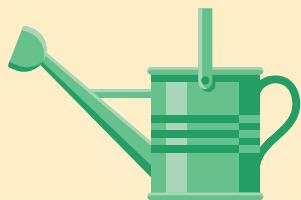
Carefully tear out the Lesson 1 Activity Sheet from the back of the answer key.

1. Look at the grid. How many total squares do you think there are?

I guess there are _____ squares.

2. Start numbering the squares in order from left to right starting in the top row. Fill in the numbers 1 to 23.
3. Take another guess about how many squares are on the grid.

I guess there are _____ squares.

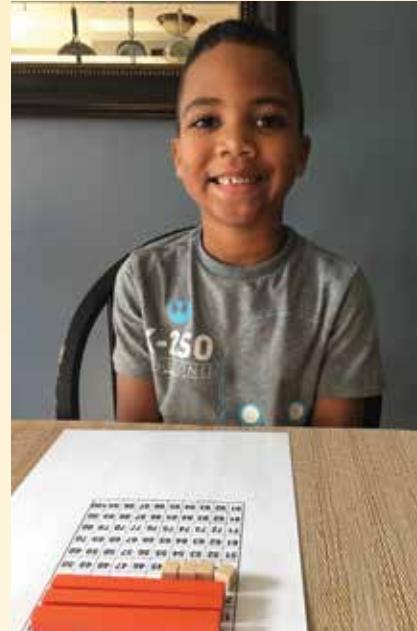

4. Fill in the rest of the squares to check your answer. Have your parent look over your chart to make sure you numbered it correctly.

There are _____ squares.

5. Now take out your colored pencils. We are going to color in certain parts of the chart to see if we notice any patterns. Color every number on the grid that ends with a zero **green**. Do you notice a pattern?
6. Color all the numbers that have a 4 at the end **red**. Do you notice a pattern? Talk with your parent about this.

Challenge!

Color each number whose digits add to ten **blue**. What pattern do you notice?


TENS AND ONES

You will Need:

- Base ten blocks
- Hundreds chart (in the back of answer key)

You Will Do:

1. Carefully tear out the hundreds chart from the answer key.
2. Use your base ten blocks to model the number 34 on your hundreds chart. First, cover the top three rows with ten rods. Now use 4 unit cubes to cover up 31, 32, 33, and 34.
3. Fill in the blanks below.

$$34 = \underline{\hspace{2cm}} \text{ tens and } \underline{\hspace{2cm}} \text{ ones}$$

4. Model each of the following numbers below by laying the base ten pieces on the hundreds chart.
5. Write in how many tens and ones are in each number.

Number	Place Value	
23	_____	tens and _____ ones
84	_____	tens and _____ ones
31	_____	tens and _____ ones

Place Value with Base Ten Blocks

Our numbering system uses groups of tens to help us keep track of large numbers. When we write numbers down we use symbols called digits. In the unit opening you saw some of the picture or letter symbols that other cultures used. In our system we can write any number using these ten different **digits**.

0 1 2 3 4 5 6 7 8 9

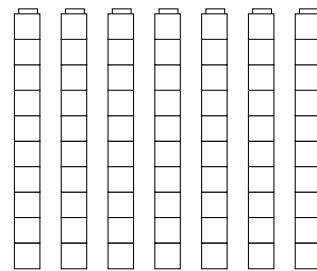
We use digits and **place value** to record numbers. Isn't it cool that we can write all numbers using just these ten digits? Place value just means that where you write a digit determines its value. Two-digit numbers have a tens place and ones place.

Digit: A symbol we use to write numbers.

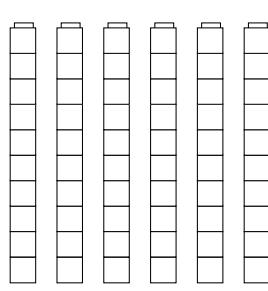
If you switch the places of the digits you get a different number.

Place value: A system of writing numbers where the location of a digit affects its value.

Place value allows us to write large numbers using only a few digits.



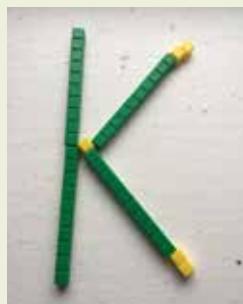
Practice


Use place value to write the numbers modeled with the base ten blocks. Count the ten rods first and write that number in the tens place. Then count the unit cubes and write that number in the ones place. Lastly, write the number using place value. The first one is done for you.

+

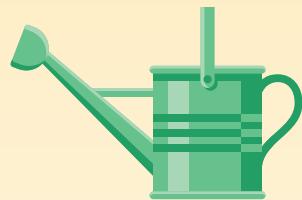
tens = ones = 14

+


tens = ones =

+

tens = ones = tens = ones =


+	+
tens = <input type="text"/> ones = <input type="text"/> _____	tens = <input type="text"/> ones = <input type="text"/> _____

Challenge!

Challenge: Make the first letter of your name using base ten blocks. If the first letter of your name has a curve use the single cubes to make the curve as best you can. When you are done add up all the base ten blocks. What is the value of the letter?

My letter equals _____ base ten blocks.

RIGHT DIGIT, RIGHT PLACE

You Will Need:

- Paper
- Pencil

You Will Do:

1. Have your parent pick a secret two-digit number. Your job is to guess their number.
2. Write your first guess in the left column.
3. Now your parent looks at your guess. They write down how many digits are correct and then how many of them are in the correct place. The sample game board above demonstrates this.
4. Continue guessing. If you realize a certain digit definitely isn't in the number then cross it off at the top. In the example, the student knew that neither 2 nor 5 was in the answer.

0	1	2	3	4	5	6	7	8	9
Guess	Digit	Place							
73	1	0							
25	0	0							
43	1	1							
47	2	2							

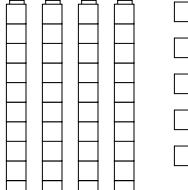
0	1	2	3	4	5	6	7	8	9
Guess	Digit	Place							

Expanded form:

A way of writing numbers that shows the value of each digit.

Expanded Form

In the last lesson, you practiced using place value to write numbers that were represented with base ten blocks. Another way to write numbers is in expanded form. **Expanded form** shows the value of each digit. Look at the example below.


Standard Form	Expanded Form
47	$40 + 7$

Practice

Practice writing numbers in different forms by completing the table below. You can use lines and dots to draw the base ten blocks.

Number	Expanded Form	Base ten blocks
68	<input type="text"/> + <input type="text"/>	
	$20 + 1$	
	<input type="text"/> + <input type="text"/>	
53	<input type="text"/> + <input type="text"/>	
	$70 + 8$	

Number	Expanded Form	Base ten blocks
45	<input type="text"/> + <input type="text"/>	
	$60 + 6$	
92	<input type="text"/> + <input type="text"/>	

Circle the value of the **red** digit.

3 **2**

2 20

2 9

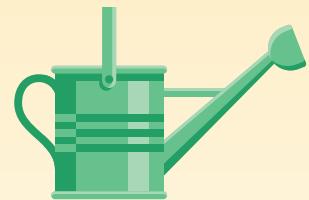
2 20

3 **4**

3 30

5 **1**

1 10

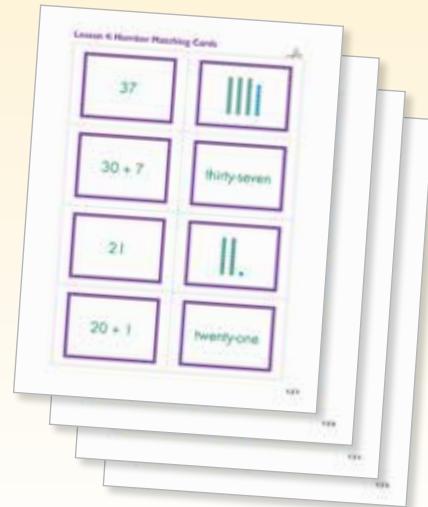

7 **2**

2 20

8 3

8 80

NUMBER MATCHING CARDS



You Will Need:

- Lesson 4 Activity Sheets (in the back of the answer key)
- Scissors

You Will Do:

1. Carefully tear out the activity sheets from answer key.
2. Cut out the different puzzle pieces or have a parent help you.
3. Match the pieces together. There are four different pieces for each number.
4. When you have matched 4 pieces, check your answer with your parent.

Number Word Names

Sometimes we need to write out a number using words instead of digits. Practice reading the numbers in this chart out loud.

1 one

6 six

2 two

7 seven

3 three

8 eight

4 four

9 nine

5 five

10 ten

11 eleven

20 twenty

12 twelve

30 thirty

13 thirteen

40 forty

14 fourteen

50 fifty

15 fifteen

60 sixty

16 sixteen

70 seventy

17 seventeen

80 eighty

18 eighteen

90 ninety

19 nineteen

100 one hundred

Practice

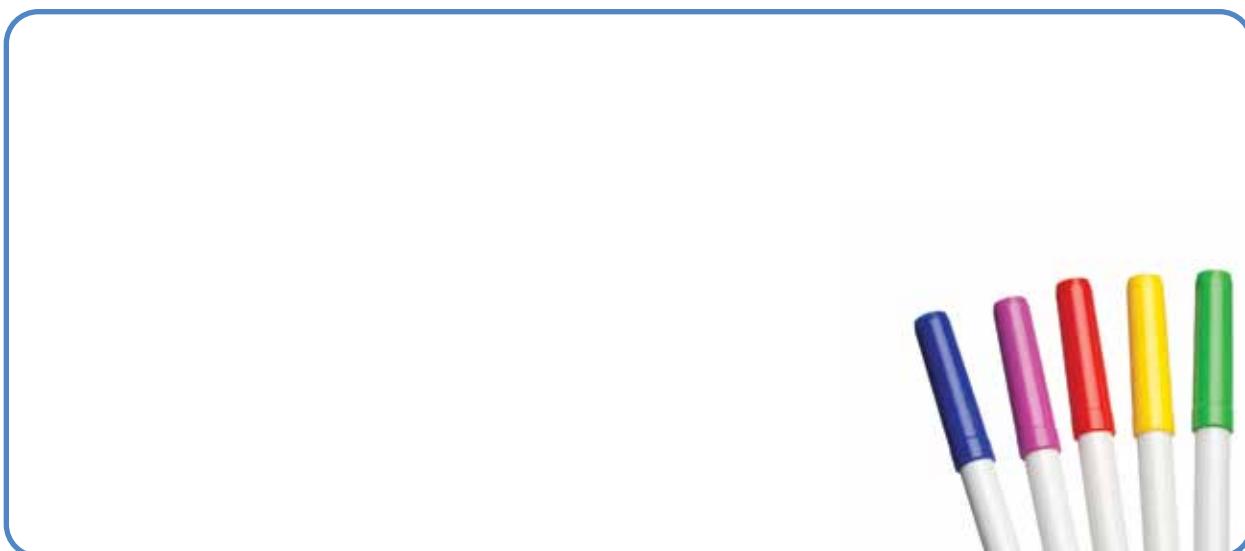
Choose two numbers between 20 and 99. Write them on the chart below. Then write them in expanded form and write their word names. Two word numbers under 100 are hyphenated. For instance, 23 is written as twenty-three.

Number	Expanded Form	Word Name
	<input type="text"/> + <input type="text"/>	
	<input type="text"/> + <input type="text"/>	

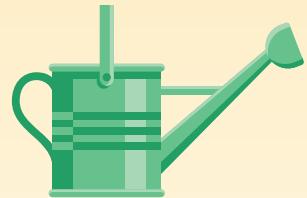
Use your knowledge of place value to solve the following number riddles.

1. I am thinking of a secret number. It is between 50 and 60 and the tens digit and the ones digit are the same. Can you guess what my number is?

Tens digit	Ones digit


2. I am thinking of a secret number. The number is less than 80. The tens digit is six more than the ones digit. There are no zeros in my number. Can you guess what my number is?

Tens digit	Ones digit


3. I am thinking of a secret number. This number is bigger than 40 and the ones digit is double the tens digit.

Tens digit	Ones digit

4. Conrad has 4 boxes of 10 markers each and 3 single markers. How many markers does Conrad have? You may want to draw a picture.

BUILD AND COMPARE

You Will Need:

Base ten blocks

You will do:

1. Build each pair of numbers shown with base ten blocks on the mats below.
2. Look at just the ten rods first. Which number has more tens? The number with more tens is the greater number.
3. If the tens are the same, then look at the ones. The number with more ones is the greater number.
4. Circle the greater number in each pair.

Which is greater?

37	28
----	----

43	34
----	----

51	55
----	----

30	32
----	----

47	51
----	----

First number	
Tens	Ones

Second number	
Tens	Ones

Comparing Numbers

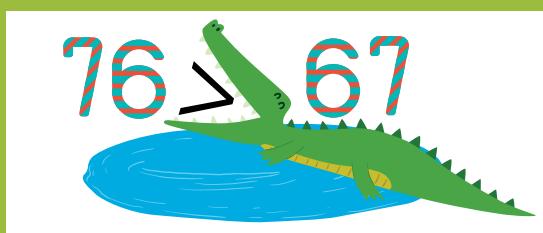
In the opening activity, you circled the greater number. Mathematicians have a special symbol to show that one number is greater than another. Here is an example:

$28 > 14$

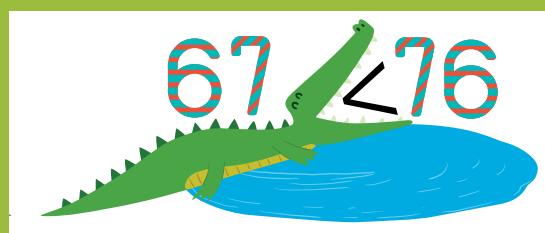
"28 is greater than 14"

This symbol means "is greater than."

Notice that the side that is bigger is open toward the larger number. There is also a symbol for showing that one number is less than another.


Here is an example:

$41 < 78$

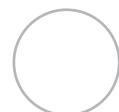

"41 is less than 78"

This symbol means "is less than."

Notice that the side that is smaller is closed and pointing toward the number that is smaller.

76 is greater than 67.

67 is less than 76.


Changing the direction of the sign changes its meaning. One way to remember is to imagine the symbol as the mouth of an alligator. The alligator always eats the larger number.

Practice

Use the $<$ and $>$ symbols to compare the numbers below. When you are deciding which number is greater, remember to look at the tens column first. It may help to first underline the number in the tens place in each number.

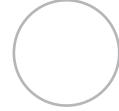
37

23

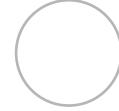
28

39

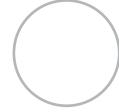
15


76

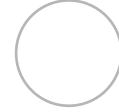
10


11

20

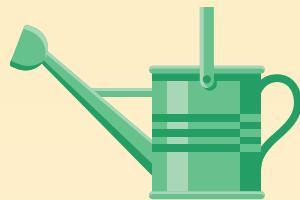

30

87


78

99

97


15

51

Write numbers in the blanks to make each number sentence true.

 $<$ $>$

BASE TEN CHALLENGE

You Will Need:

- Base ten blocks (all 10 ten rods and all 100 cubes)

You Will Do:

1. Your challenge today is to represent the number 43 using base ten blocks. The challenge is that you need to do it in 5 different ways. The first way will probably be the easiest for you. Use the rods and unit cubes to show 43. Draw a sketch of what you did in the box provided.
2. Now try building the number again with the blocks in a different way. Break down the number by substituting 10 ones for 1 ten rod.
3. Continue modeling with the blocks and sketching a picture of your answer in the spaces provided. See if you can find all 5 possibilities.

Representation #1	Representation #2	Representation #3	Representation #4	Representation #5

Putting Numbers in Order

In the last lesson, you compared numbers by looking at the tens place first. You can use the same strategy to put several numbers in order from least to greatest.

Step One: Look at the digits in the tens place. Rearrange the numbers from least to greatest according to their tens digits.

Step Two: If any of the number have the same tens digit, then look at the ones place. Change the order if you need to.

Practice

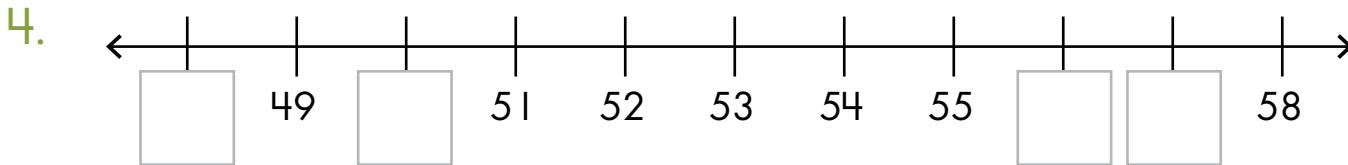
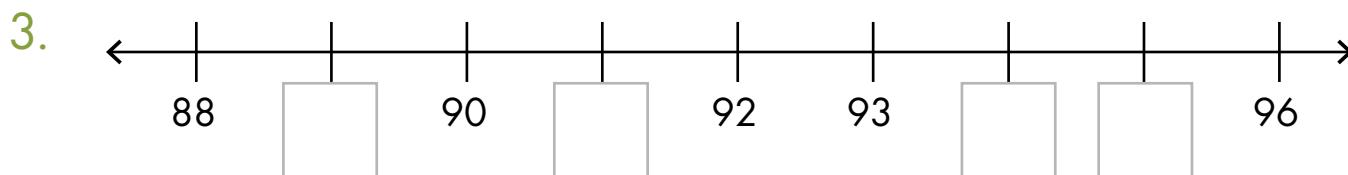
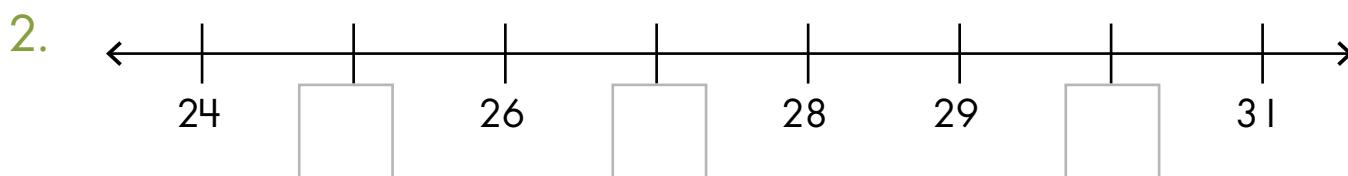
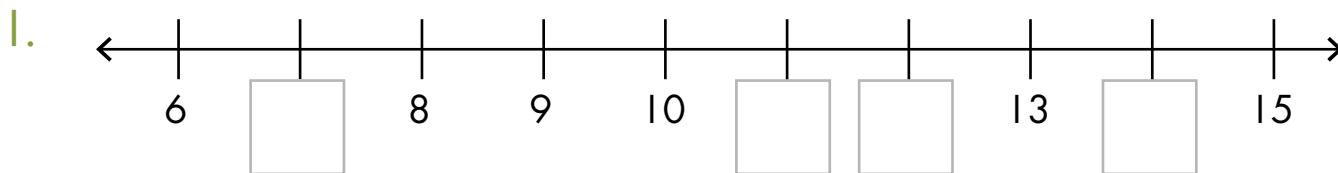
You can use the steps above to put these numbers in order from least to greatest. Underline each tens digit. If more than one number has the same tens digit, circle the ones digit to see which is smaller. Write your answers on the spaces provided.

17, 19, 52, 35, 42

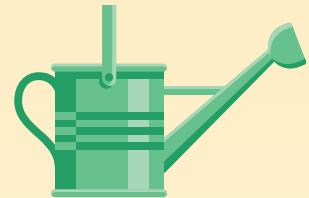
_____ , _____ , _____ , _____ , _____

84, 92, 73, 38, 71

_____ , _____ , _____ , _____ , _____





77, 80, 56, 73, 19

_____ , _____ , _____ , _____ , _____



Practice

Another tool mathematicians use to show the order of numbers is a number line. Fill in the missing numbers on the number lines below.

FIND YOUR PARTNER

You Will Need:

- 20 linking cubes
- Colored pencils (to be used later)

You Will Do:

1. 6 children are playing a game. They each need a partner. Will every child have a partner?
2. Use your linking cubes to act out the scenario. Start with 6 cubes. Snap the cubes together to show the pairs of children. Will they each have a partner? Tell your parent.
3. 5 children are playing a game. They each need a partner. Will every child have a partner?
4. Use your linking cubes to act out the scenario. Start with 5 cubes. Snap the cubes together to show the pairs of children. Will they each have a partner? Tell your parent.
5. Continue acting out the scenario for different numbers of children and record your results by filling in the table below. Do you notice any patterns?

Number of children	Does everyone have a partner?	Draw a picture of what happened when you made the pairs.
1		
2		
3		

Number of children	Does everyone have a partner?	Draw a picture of what happened when you made the pairs.
4		
5		
6		
7		
8		
9		
10		

Even and Odd Numbers

The groups where everyone had a partner in the opening activity were all **even numbers**. Even numbers can be grouped evenly in pairs. The groups where one child didn't have a partner were all **odd numbers**. When you try to make pairs with an odd number there will always be one left over.

Color the even numbers **red** on the strip below. Color the odd numbers **blue**. Look at what happened in the opening activity if you are not sure whether a number is even or odd.

1	2	3	4	5	6	7	8	9	10
---	---	---	---	---	---	---	---	---	----

What pattern do you notice?
Tell your parent.

Based on that pattern, do you think the number 11 will be even or odd?
Circle your guess below in pencil.

||

even odd

Count out 11 linking cubes to check your answer. Can you group them into pairs with no cube leftover? If so, then 11 is even. If not, then it is an odd number. Change your answer if you need to make it correct.

Practice

Circle whether each of these numbers is even or odd.

Then check your answer with linking cubes. Fix any answers that are incorrect.

12

even

odd

17

even

odd

13

even

odd

18

even

odd

14

even

odd

19

even

odd

15

even

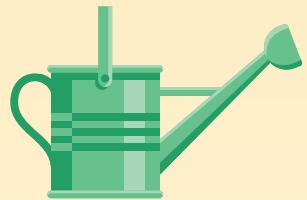
odd

20

even

odd

16


even

odd

Mom finds 7 socks in the laundry. Will every sock have a match? Why or why not?
Draw a picture to explain your answer.

TOWER PAIRS

You will Need:

20 linking cubes

You Will Do:

1. Count out 10 linking cubes. Use the cubes to build two towers that are the same height. How many cubes are in each tower?

_____ cubes in each tower.

2. Count out 18 linking cubes. Use the cubes to build two towers that are the same height. How many cubes are in each tower?

_____ cubes in each tower.

3. Count out 14 linking cubes. Use the cubes to build two towers that are the same height. How many cubes are in each tower?

_____ cubes in each tower.

4. Count out 9 linking cubes. Can you build two towers that are the same height? Why or why not? Tell your parent.

5. Give some examples of numbers like 10 and 14 that you could use to build two towers that are the same height.

6. Give some examples of numbers like 9 that you could **NOT** use to build two towers that are the same height.

Even and Odd Practice

The numbers that you used to build 2 towers of the same height are all even numbers. Look at the number 12, for instance. Twelve is an even number. It can be split into 2 equal groups of 6.

If you started with an odd number of linking cubes - like 9, 11, or 5 - you couldn't build 2 towers that were the same height. One tower would always be one cube higher.

Practice

Each of the numbers below is even. Write a number sentence showing how the number can be split into two equal groups. If you need help, use your linking cubes and build two towers like you did in the opening activity.

$$4 \quad \boxed{} + \boxed{} = 4$$

$$14 \quad \boxed{} + \boxed{} = 14$$

$$6 \quad \boxed{} + \boxed{} = 6$$

$$18 \quad \boxed{} + \boxed{} = 18$$

$$10 \quad \boxed{} + \boxed{} = 10$$

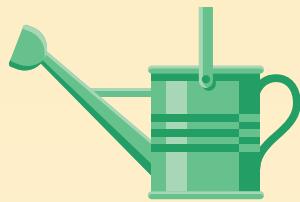
$$20 \quad \boxed{} + \boxed{} = 20$$

Odd numbers cannot be split into two equal groups. There will always be one left over. Look at these number sentences where the solutions are odd numbers.

$$7 \longrightarrow 3 + 3 + 1 = 7$$

$$11 \longrightarrow 5 + 5 + 1 = 11$$

Practice


Write number sentences for each of these odd numbers. If you need help, use your linking cubes and build two towers like you did in the opening activity. You will have one cube leftover.

$$5 \quad \boxed{} + \boxed{} + 1 = 5$$

$$9 \quad \boxed{} + \boxed{} + 1 = 9$$

$$13 \quad \boxed{} + \boxed{} + 1 = 13$$

$$17 \quad \boxed{} + \boxed{} + 1 = 17$$

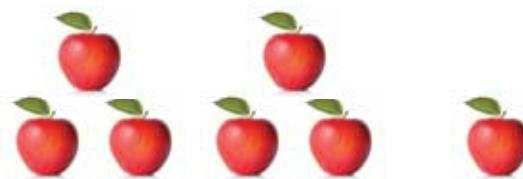
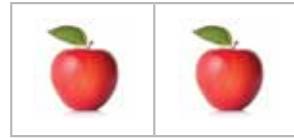
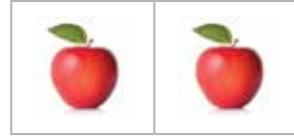
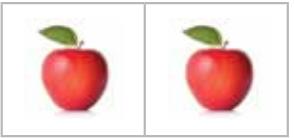
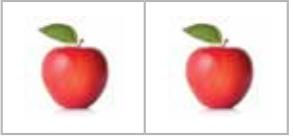
FINAL DIGITS

You Will Need:

- Colored pencils

You Will Do:

1. Look at the hundreds chart below. Color all the numbers that have a 2 as their final digit **red**.
2. Color all the numbers that have a 4 as their final digit **blue**.
3. Color all the numbers that have a 6 as their final digit **green**.
4. Color all the digits that have an 8 as their final digit **purple**.
5. Color all the digits that have a zero as their final digit **yellow**.
6. Look at all the squares that are colored in. Do you notice a pattern?


1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

More Even and Odd Practice

All even numbers end with the digit 2, 4, 6, 8, or 0. This is why in the opening activity you ended up coloring in all the even numbers. Odd numbers end with the digit 1, 3, 5, 7, or 9.

We now know several different things about even and odd numbers. The chart below will help you review.

Even numbers	Odd Numbers
Last digit is 2, 4, 6, 8, or 0	Last digit is 1, 3, 5, 7, or 9
Can be divided into two equal groups.	If you try to divide it into two equal groups there will be one left over.
Can be grouped evenly in pairs.	Cannot be grouped evenly in pairs. There will always be one leftover.

Practice

Use what you know about the last digits of even and odd numbers to decide if each number below is even or odd. If you get stuck you can also look back at the hundreds chart you colored.

21

even

odd

27

even

odd

42

even

odd

31

even

odd

45

even

odd

50

even

odd

80

even

odd

75

even

odd

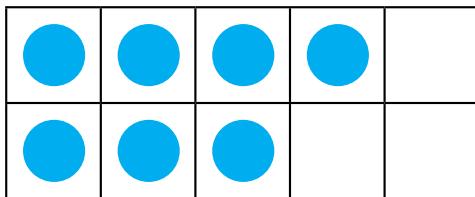
99

even

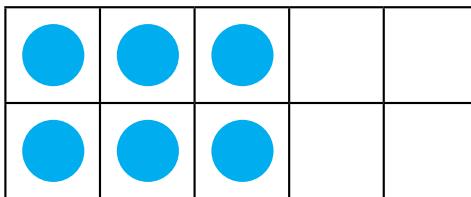
odd

72

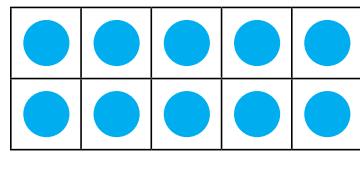
even

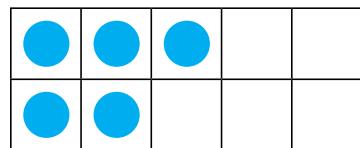

odd

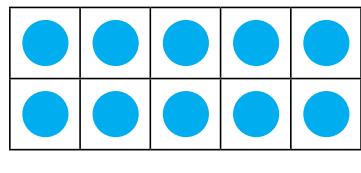
Give 3 examples of two-digit odd numbers.

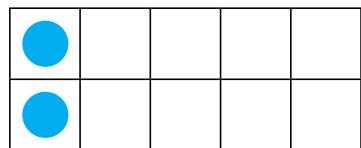


Practice


Look at the ten frames. Circle whether they show an even or an odd number.

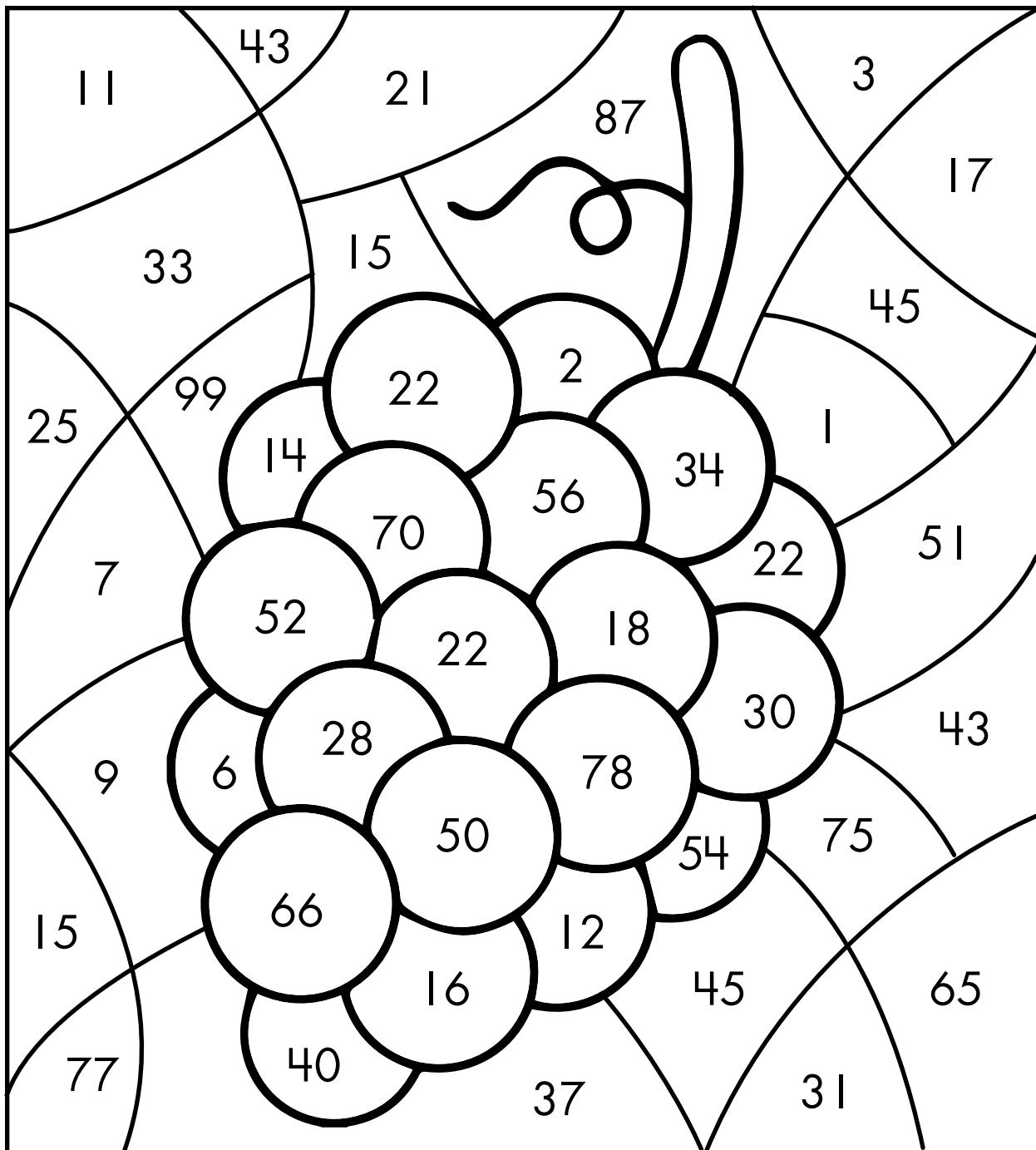

even


even


even

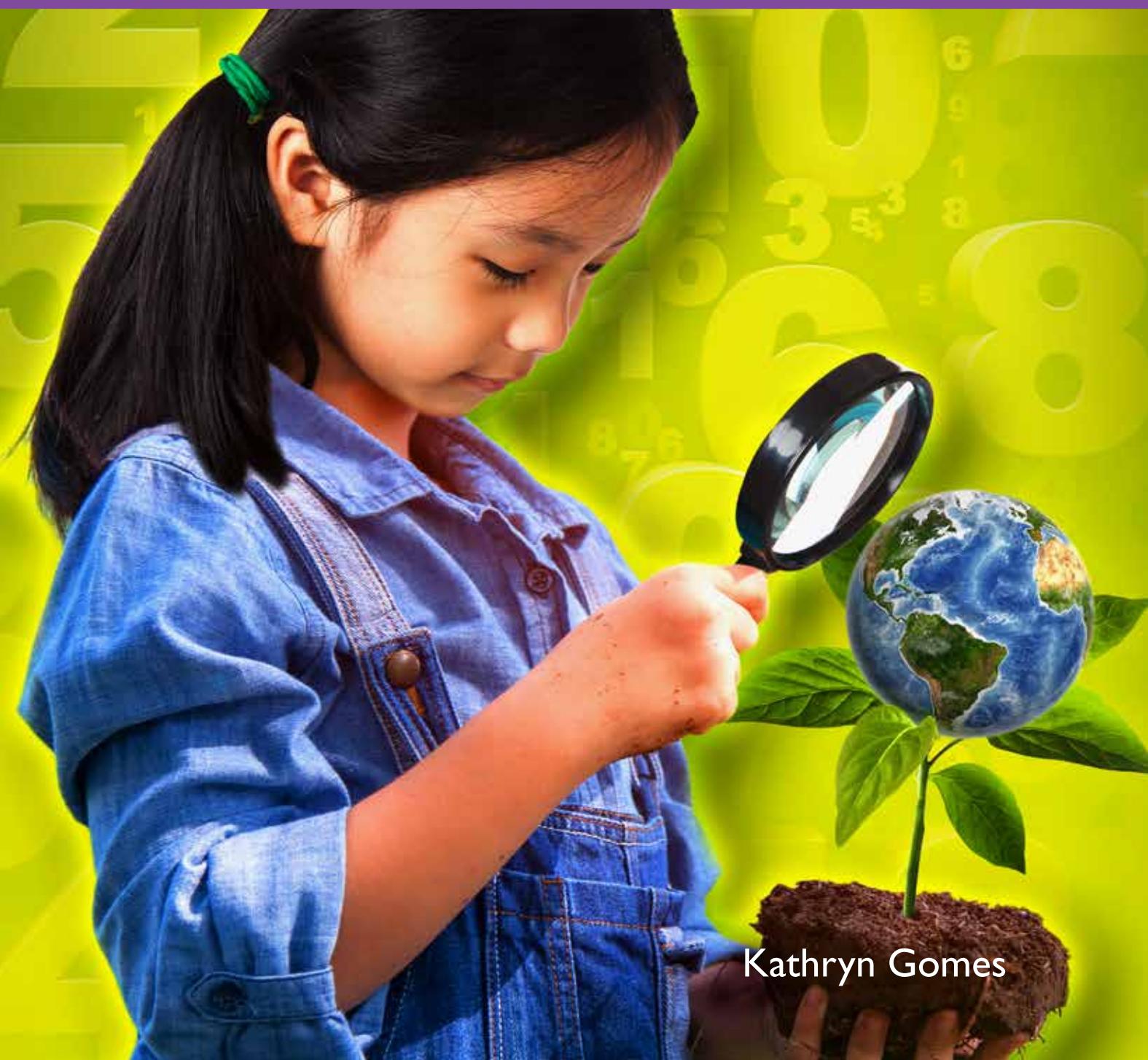
odd

even


odd

Give 3 examples of two-digit even numbers.

Practice

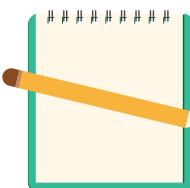

Color the even numbers in the picture ● purple and the odd numbers ● blue to see what Anna's favorite snack is.

2
LEVEL

apologia

EXPLORING CREATION WITH
MATHEMATICS
TEACHING GUIDE
& ANSWER KEY

Kathryn Gomes


TABLE OF CONTENTS

Daily Schedule.....	4
Introduction	10
Skills Practice Overview.....	12
Unit One: Number Sense and Place Value	13
Chapter 1: Numbers and Patterns	17
Chapter 2: Numbers to 1000	27
Unit Two: Addition and Subtraction with Two-Digit Numbers	38
Chapter 3: Addition and Subtraction Within 20.....	44
Chapter 4: Going Deeper with Addition and Subtraction	51
Chapter 5: Adding Two-Digit Numbers	57
Chapter 6: Subtracting Two-Digit Numbers	65
Unit Three: Money and Time	75
Chapter 7: Money	77
Chapter 8: Time	83
Unit Four: Addition and Subtraction with Three-Digit Numbers	87
Chapter 9: Adding Three-Digit Numbers	89
Chapter 10: Subtracting Three-Digit Numbers	94
Unit Five: Measurement and Data	100
Chapter 11: Measuring Length	102
Chapter 12: Measuring Length with a Different System	108
Chapter 13: Data and Graphs	110
Unit Six: Geometry	114
Chapter 14: Shapes	116

WEEK-BY-WEEK DAILY SCHEDULE

Below is a suggested weekly schedule to help you stay on track. It uses a four-day week to leave room for a co-op day or a review day. Please feel free to adjust it to the needs of your child and your family's calendar. Since the suggested schedule covers 28 weeks, there is plenty of room for personal modifications.

WEEK	DAY 1	DAY 2	DAY 3	DAY 4
1	UNIT 1 Intro <input type="checkbox"/> CHAPTER 1 Lesson 1 Skills practice: doubles facts	CHAPTER 1 <input type="checkbox"/> Lesson 2 Skills practice: doubles facts	CHAPTER 1 <input type="checkbox"/> Lesson 3 Skills practice: doubles facts	CHAPTER 1 <input type="checkbox"/> Lesson 4 Skills practice: doubles facts
2	CHAPTER 1 <input type="checkbox"/> Lesson 5 Skills practice: doubles plus or minus one	CHAPTER 1 <input type="checkbox"/> Lesson 6 Skills practice: doubles plus or minus one	CHAPTER 1 <input type="checkbox"/> Lesson 7 Skills practice: doubles plus or minus one	CHAPTER 1 <input type="checkbox"/> Lesson 8 Skills practice: doubles plus or minus one
3	CHAPTER 1 <input type="checkbox"/> Lesson 9 Skills practice: addition and subtraction facts within 10	CHAPTER 2 <input type="checkbox"/> Lesson 10 Skills practice: addition and subtraction facts within 10	CHAPTER 2 <input type="checkbox"/> Lesson 11 Skills practice: addition and subtraction facts within 10	CHAPTER 2 <input type="checkbox"/> Lesson 12 Skills practice: addition and subtraction facts within 10

TEACHER'S NOTES

UNIT I: NUMBER SENSE AND PLACE VALUE

SUPPLY LIST

Skills Practice:

- Flashcards
- LEGO® bricks
- Dominoes
- Dice

Chapter 1:

- Timer
- Colored pencils
- Tape or glue
- Scissors
- Base ten blocks
- Linking cubes

Chapter 2:

- Fifty small objects (such as pennies, beans, etc.)
- Three dice
- Base ten blocks
- A bag of beans (or about 200 other small objects)
- Ruler or tape measure

Unit one focuses on number sense and takes students to a deeper level of understanding than what they covered in first grade. There is a good amount of play in this unit; they will be trying out different things with numbers and experimenting with what happens. This kind of exploration leads to a strong foundation in mathematics.

The text was written assuming you will be sitting alongside of your child to help them. Different kids will demonstrate different levels of independence, but a second grader is not expected to read and complete the student book on his or her own.

There are additional resources for this program on the Book Extras Website. For login information and the password turn to page 10 in the student book.

SKILLS PRACTICE FOR UNIT ONE: FACTS FROM FIRST GRADE

All of the facts in the unit one skills practice are a review from first grade. We want to sharpen these skills before unit two when students will be relying on rapid recall of these basic facts, so they can complete two-digit addition and subtraction problems. For many of these, a few minutes with flashcards is going to be your best option.

Skill One: Doubles facts

This group of facts is often easier to master because of the symmetry. Something about doubles facts is just appealing. Use them as a benchmark for learning other facts.

$$1 + 1 = 2$$

$$4 + 4 = 8$$

$$7 + 7 = 14$$

$$10 + 10 = 20$$

$$2 + 2 = 4$$

$$5 + 5 = 10$$

$$8 + 8 = 16$$

$$3 + 3 = 6$$

$$6 + 6 = 12$$

$$9 + 9 = 18$$

1. Flashcards. Pull out just the doubles facts and rehearse them.
2. Domino fact practice. Select only the dominoes that have the same amount of dots on both sides. Write down the numbers 0, 2, 4, 6, 8, 10, 12 on a sheet of paper. Have your child match each domino with the correct sum. If your set of dominoes goes above 12 you can include those sums as well.

Skill Two: Doubles plus or minus one

Using the doubles facts as a reference, we will now practice the facts that are one more or one less. Here are the facts you need to practice:

$$0 + 1 = 1$$

$$5 + 6 = 11$$

$$1 + 0 = 1$$

$$6 + 5 = 11$$

$$1 + 2 = 3$$

$$6 + 7 = 13$$

$$2 + 1 = 3$$

$$7 + 6 = 13$$

$$2 + 3 = 5$$

$$7 + 8 = 15$$

$$3 + 2 = 5$$

$$8 + 7 = 15$$

$$3 + 4 = 7$$

$$8 + 9 = 17$$

$$4 + 3 = 7$$

$$9 + 8 = 17$$

$$4 + 5 = 9$$

$$9 + 10 = 19$$

$$5 + 4 = 9$$

$$10 + 9 = 19$$

1. Flashcards. Add the facts on the bottom of page 14 in with the doubles and continue to practice.
2. Play the Doubles Plus or Minus One game in lesson 24. You can print an extra copy of the game board off of the Book xtras website.

Skill Th ee: Addition and subtraction facts within 10

Many of these addition facts were already covered but now we are adding in subtraction facts too. This is a gentle review. We will be tackling all the facts within 20 in unit two. Be sure that students are practicing them backwards and forwards and in a horizontal and a vertical format.

Addition facts

$1 + 3 = 4$	$1 + 7 = 8$	$2 + 5 = 7$	$3 + 5 = 8$
$1 + 4 = 5$	$1 + 8 = 9$	$2 + 6 = 8$	$3 + 6 = 9$
$1 + 5 = 6$	$1 + 9 = 10$	$2 + 7 = 9$	$3 + 7 = 10$
$1 + 6 = 7$	$2 + 4 = 6$	$2 + 8 = 10$	$4 + 6 = 10$

Subtraction facts

$10 - 10 = 0$	$9 - 4 = 5$	$7 - 5 = 2$	$5 - 2 = 3$
$10 - 9 = 1$	$9 - 3 = 6$	$7 - 4 = 3$	$5 - 1 = 4$
$10 - 8 = 2$	$9 - 2 = 7$	$7 - 3 = 4$	$5 - 0 = 5$
$10 - 7 = 3$	$9 - 1 = 8$	$7 - 2 = 5$	$4 - 4 = 0$
$10 - 6 = 4$	$9 - 0 = 9$	$7 - 1 = 6$	$4 - 3 = 1$
$10 - 5 = 5$	$8 - 8 = 0$	$7 - 0 = 7$	$4 - 2 = 2$
$10 - 4 = 6$	$8 - 7 = 1$	$6 - 6 = 0$	$4 - 1 = 3$
$10 - 3 = 7$	$8 - 6 = 2$	$6 - 5 = 1$	$4 - 0 = 4$
$10 - 2 = 8$	$8 - 5 = 3$	$6 - 4 = 2$	$3 - 3 = 0$
$10 - 1 = 9$	$8 - 4 = 4$	$6 - 3 = 3$	$3 - 2 = 1$
$10 - 0 = 10$	$8 - 3 = 5$	$6 - 2 = 4$	$3 - 1 = 2$
$9 - 9 = 0$	$8 - 2 = 6$	$6 - 1 = 5$	$3 - 0 = 3$
$9 - 8 = 1$	$8 - 1 = 7$	$6 - 0 = 6$	$2 - 2 = 0$
$9 - 7 = 2$	$8 - 0 = 8$	$5 - 5 = 0$	$2 - 1 = 1$
$9 - 6 = 3$	$7 - 7 = 0$	$5 - 4 = 1$	$2 - 0 = 2$
$9 - 5 = 4$	$7 - 6 = 1$	$5 - 3 = 2$	$1 - 1 = 0$

1. Flashcards. Include all addition and subtraction facts within 10.
2. Play Toppling Towers of 10 to practice subtraction. The instructions for this activity are included below.
3. Practice grouping facts according to their answers. Label several sheets of paper with the numbers 0–10. Have your child stack the flashcards on top of the paper with the correct answer. They can use both addition and subtraction facts in this practice. You can also do this with dominoes to practice just addition.

Toppling Towers of 10

You Will Need:

- Ten LEGO bricks (or linking cubes) per player
- A die

You Will Do:

The object of the game is to take down your opponent's tower before he or she takes down yours.

1. Each player starts by building a tower of 10.
2. The first player rolls the die. He or she removes that number of LEGO bricks from another player's tower while saying the subtraction sentence out loud. For example, "Ten minus 3 is 7."
3. Players continue taking turns rolling the die and removing that number of LEGO bricks from another player's tower.
4. You must roll the exact amount to take another player's tower all the way down to zero. For instance, if your brother has 3 LEGO bricks left and you roll a 4, you cannot take away his 3 LEGO bricks. When a player has lost an entire tower, he or she is out.
5. The last player remaining wins.

Skill Four: Identifying even and odd numbers

These are introduced at the end of chapter 1, but it is worth circling back for some spaced repetition while your child is working through the lessons in chapter 2.

1. Practice with groups of objects. Place a group of beans on the table and ask students to determine if it is an even or odd amount. Repeat with a variety of amounts. Talk with them about how they arrived at their answer (or why they got stuck). Most kids will figure it out by making pairs and seeing if there are any left over.
2. Give your child a set of numbered cards. You can purchase these or make them yourself. Have your child sort them into 2 piles: even and odd. Start with just the numbers 1–20 and work up to include numbers up to 100 so that your child masters the concept of looking at just the final digit.
3. Check out your library to see if it has any math books like *Even Steven, Odd Todd* by Kathryn Cristaldi.

.....

CHAPTER 1: NUMBER SENSE AND PLACE VALUE

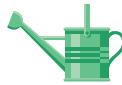
LESSON 1

In the opening activity, students draw as many stars as they can in a minute and then count them up. Some students might just count up the stars one by one. Others might group them by fives or tens. Talk with your child about different strategies and their advantages. The discussion is more important than the specific strategy. We want to develop mathematicians who are comfortable using a variety of strategies and who know how to choose the best one for a certain problem. That flexibility and level of expertise are developed at the elementary level through exposure to many different approaches to the same task and discussion about these different approaches.

Place value is one of the key concepts in second grade, so it is important that students develop a firm grasp of what place value is and how it functions in our numbering system. The patterns in the hundreds chart help them discover these relationships. And of course, there are always more patterns to be found if they want to keep looking.

The challenge uses the vocabulary word “digit” so that students can explore something more in depth on the chart. This vocabulary word will be further explained and defined in lesson 2

Take it Further: Color all the numbers that have the same digits purple. What pattern do you notice?


Page 17 Answers

Practice
Carefully tear out the lesson 1 Activity Sheet from the back of the answer key.

- Look at the grid. How many total squares do you think there are?
I guess there are _____ squares. **Answers will vary.**
- Start numbering the squares in order from left to right starting in the top row. Fill in the numbers 1 to 23.
- Take another guess about how many squares are on the grid.
I guess there are _____ squares. **Answers will vary.**
- Fill in the rest of the squares to check your answer. Have your parent look over your chart to make sure you numbered it correctly.
There are **100** squares.
- Now take out your colored pencils. We are going to color in certain parts of the chart to see if we notice any patterns. Color every number on the grid that ends with a zero green. Do you notice a pattern?
- Color all the numbers that have a 4 at the end red. Do you notice a pattern? Talk with your parent about this.

Challenge!
Color each number whose digits add to ten blue. What pattern do you notice?

LESSON 2

The opening activity helps them make a neat connection between their base ten blocks and the hundreds chart. The challenge at the end of this lesson introduces an element of play. Any time you catch your kids playing with math manipulatives encourage them to continue. Kids often discover relationships between numbers while casually exploring.

Page 18 Answers

LESSON 2 PLACE VALUE WITH BASE TEN BLOCKS

TENS AND ONES

You Will Need:

- Base ten blocks
- Hundreds chart (in the back of answer key)

You Will Do:

- Carefully tear out the hundreds chart from the answer key.
- Use your base ten blocks to model the number 34 on your hundreds chart. Cover the top three rows with ten rods. How are 10 ones cubes to cover up 31, 32, 33, and 34.
- Fill in the blanks below.

34 = _____ tens and _____ ones

4. Model each of the following numbers below by laying the base ten pieces on the hundreds chart.

5. Write in how many tens and ones are in each number.

Number	Place Value
23	2 tens and 3 ones
84	8 tens and 4 ones
31	3 tens and 1 ones

Page 20 Answers

LESSON 2 PLACE VALUE WITH BASE TEN BLOCKS

Practice

Use place value to write the numbers modeled with the base ten blocks. Count the ten rods first and write that number in the tens place. Then count the unit cubes and write that number in the ones place. Lastly, write the number using place value. The first one is done for you.

20

Page 21 Answers

LESSON 2 PLACE VALUE WITH BASE TEN BLOCKS

--	--


Challenge!

Challenge: Make the first letter of your name using base ten blocks. If the first letter of your name has a curve use the single cubes to make the curve as best you can. When you are done add up all the base ten blocks. What is the value of the letter?

K

My letter equals _____ base ten blocks.
Answers will vary.

21

LESSON 3

In the opening activity, we have you think of the secret number. With some practice, your child will be able to discover the secret number. But for now, we didn't want the game to be too hard for them. Also, don't be discouraged if their guesses are illogical. Play the game several times and see if they start to realize how they can guess more efficient .

Expanded form develops the important concepts behind place value that are especially important when we start adding and subtracting in unit two.

Page 23 Answers

LESSON 3 EXPANDED FORM

Practice

Practice writing numbers in different forms by completing the table below. You can use lines and dots to draw the base ten blocks.

Number	Expanded Form	Base ten blocks
68	$60 + 8$	
21	$20 + 1$	
70	$70 + 0$	
53	$50 + 3$	
78	$70 + 8$	

23

Page 24 Answers

LESSON 3 EXPANDED FORM

Number	Expanded Form	Base Ten Blocks
45	$40 + 5$	
66	$60 + 6$	
92	$90 + 2$	

Circle the value of the red digit.

32	2 20	29	2 20	34	3 30
51	1 10	72	2 20	83	8 80

24

LESSON 4

Keep the matching cards from the opening activity in an envelope if your child needs more practice in the future.

Page 27 Answers

NUMBER WORD NAMES LESSON 4

Practice

Choose two numbers between 20 and 99. Write them on the chart below. Then write them in expanded form and write their word names. Two word numbers under 100 are hyphenated. For instance, 23 is written as twenty-three.

Number	Expanded Form	Word Name
	$\square + \square$	Answers will vary.
	$\square + \square$	Answers will vary.

Use your knowledge of place value to solve the following number riddles.

1. I am thinking of a secret number. It is between 50 and 60 and the tens digit and the ones digit are the same. Can you guess what my number is?

Tens digit	Ones digit
5	5

27

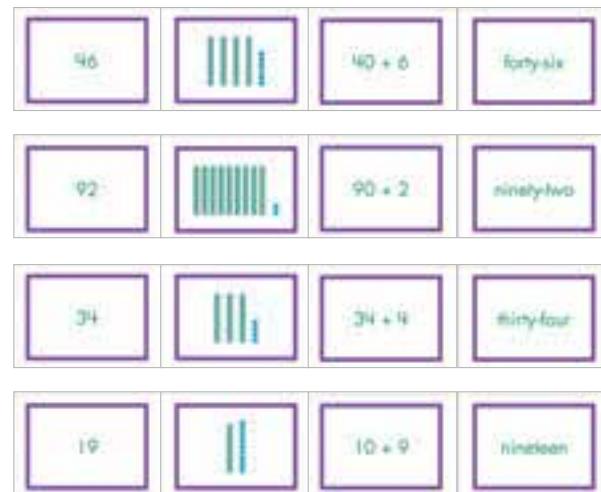
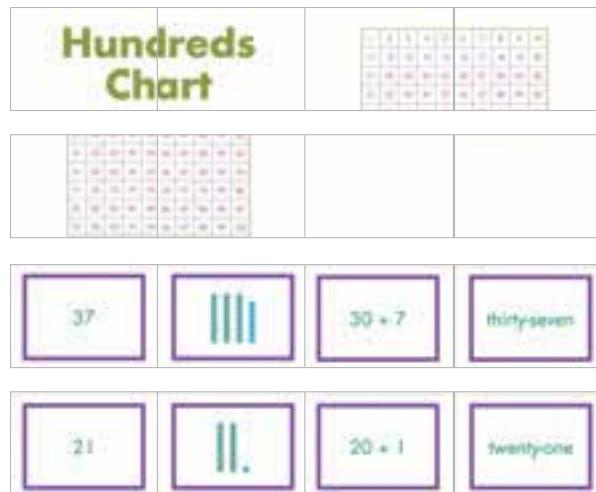
Page 28 Answers

NUMBER WORD NAMES LESSON 4

2. I am thinking of a secret number. The number is less than 80. The tens digit is six more than the ones digit. There are no zeros in my number. Can you guess what my number is?

Tens digit	Ones digit
7	1

3. I am thinking of a secret number. This number is bigger than 40 and the ones digit is double the tens digit.



Tens digit	Ones digit
4	8

4. Conrad has 4 boxes of 10 markers each and 3 single markers. How many markers does Conrad have? You may want to draw a picture.

43 markers

43

LESSON 4: NUMBER MATCHING CARDS ANSWERS

LESSON 5

Getting the direction of the inequality correct is harder for most students than deciding which number is greater. If they make a mistake on the practice ask them to point to the greater number for you. If they get that right then you know they are just struggling with the inequality sign. Learning to write notation and symbols correctly is a key skill in mathematics. Your child is essentially learning to write in a new language, the language of mathematics.

Page 29 Answers

Comparing Numbers | Lesson 5

BUILD AND COMPARE

You Will Need:
 Base ten blocks

You will do:

- Build each pair of numbers shown with base ten blocks on the mats below.
- Look at just the ten rods first. Which number has more tens? The number with more tens is the greater number.
- If the tens are the same, then look at the ones. The number with more ones is the greater number.
- Circle the greater number in each pair.

Which is greater?

31	28
45	34
51	31
30	21
47	37

First number	Second number
Tens	Ones

First number	Second number
Tens	Ones

29

Comparing Numbers | LESSON 5

Practice

Use the < and > symbols to compare the numbers below. When you are deciding which number is greater, remember to look at the tens column first. It may help to first underline the number in the tens place in each number.

37	23	28	39
15	76	10	11
20	30	87	78
99	97	15	51

Write numbers in the blanks to make each number sentence true.

 < >

Answers will vary.

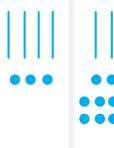
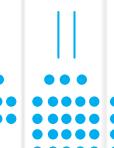
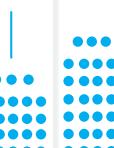
31

LESSON 6

 Did you lose a few of those unit cubes? The same thing happens at our house. You could also use some other small objects and substitute them for the cubes as long as your child understands that each item represents one. Even if you have a complete set, you won't have enough unit cubes to make all 5 representations at the same time, that's why we have them sketch a picture of each representation.

If your child struggles with putting the numbers in order try writing each number on a slip of paper. Many kids have an easier time if they can physically move the numbers around and correct a mistake without having to erase.

LESSON 6 | PUTTING NUMBER IN ORDER




BASE TEN CHALLENGE

You Will Need:

Base ten blocks (10 ten rods and all 100 cubes)

You Will Do:

1. Your challenge today is to represent the number 43 using base ten blocks. The challenge is that you need to do it in 5 different ways. The first way will probably be the easiest for you: Use the rods and units rods to show 43. Draw a sketch of what you did on the lines below.
2. Now try building the number again with the blocks in a different way. Break down the number by substituting 10 ones for 1 ten rod.
3. Continue modeling with the blocks and sketching a picture of your answer in the space provided. See if you can find all 5 possibilities.

Representation #1	Representation #2	Representation #3	Representation #4	Representation #5

32

Page 33 Answers

PUTTING NUMBERS IN ORDER **LESSON 6**

Putting Numbers in Order

In the last lesson, you compared numbers by looking at the tens place first. You can use the same strategy to put several numbers in order from least to greatest.

Step One Look at the digits in the tens place. Rearrange the numbers from least to greatest according to their tens digits.

Step Two If any of the numbers have the same tens digits, then look at the ones place. Change the order if you need to.

Practice

You can use the steps above to put these numbers in order from least to greatest. Underline each tens digit. If more than one number has the same tens digit, circle the ones digit to use which is smaller. Write your answers on the spaces provided.

17, 19, 52, 35, 42
17 19 35 42 52
84, 92, 73, 38, 71
38 71 73 84 92
77, 80, 56, 73, 19
19 56 73 77 80

33

Page 34 Answers

PUTTING NUMBERS IN ORDER **LESSON 6**

Practice

Another tool mathematicians use to show the order of numbers is a number line. Fill in the missing numbers on the number lines below.

1. ← 6 **7** 8 9 10 11 12 13 14 15 →
2. ← 24 **25** 26 27 28 29 30 31 →
3. ← 88 **89** 90 91 92 93 94 95 96 →
4. ← 48 **49** 50 51 52 53 54 55 **56** 57 58 →

34

LESSON 7

Students need a good amount of practice with the concepts of even and odd so that it can really sink in. The next three lessons develop this concept. Whenever possible, talk about even and odd amounts throughout the day. Pairs of shoes and socks are one my favorite examples. We normally are missing a sock in the laundry so that works out well for the odd number. Markers and their caps can also work well as an example.

Page 35 Answers

EVEN AND ODD NUMBERS **LESSON 7**

FIND YOUR PARTNER

You Will Need:

- 30 linking cubes
- Colored pencils (to be used later)

You Will Do:

1. 4 children are playing a game. They each need a partner. Will every child have a partner?
2. Use your linking cubes to act out the scenario. Share with a classmate. Will they each have a partner? Fill your partner?
3. 3 children are playing a game. They each need a partner. Will every child have a partner?
4. Use your linking cubes to act out the scenario. Start with 5 cubes. Stop the cubes together to show the pairs of children. Will they each have a partner? Fill your partner?
5. Continue acting out the scenario for different numbers of children and record your results by filling in the table below. Do you notice any patterns?

Number of children	Does everyone have a partner?	Draw a picture of what happened when you made like pairs.
1	no	<input type="checkbox"/>
2	yes	<input type="checkbox"/>
3	no	<input type="checkbox"/> <input type="checkbox"/>

35

Page 36 Answers

LESSON 7 EVEN AND ODD NUMBERS

Number of children	Does everyone have a partner?	Draw a picture of what happened when you made the pairs.
4	yes	
5	no	
6	yes	
7	no	
8	yes	
9	no	
10	yes	

36

Page 38 Answers

LESSON 7 EVEN AND ODD NUMBERS

Practice

Circle whether each of these numbers is even or odd. Then check your answer with linking cubes. Fix any answers that are incorrect.

12	even	odd
17	even	odd
13	even	odd
18	even	odd
14	even	odd
19	even	odd
15	even	odd
20	even	odd
16	even	odd

Mom finds 7 socks in the laundry. Will every sock have a match? Why or why not? Draw a picture to explain your answer. No, there will be one sock leftover.

38

LESSON 8

This lesson de-velops the idea of evens and odds in a new way. We want students to see that all even numbers can be broken down into a doubles fact and all odds are a doubles fact plus one more.

Page 39 Answers

EVEN AND ODD PRACTICE

LESSON 8

TOWER PAIRS

You will Need: 30 linking cubes

You Will Do:

- Count out 10 linking cubes. Use the cubes to build two towers that are the same height. How many cubes are in each tower?
5 cubes in each tower.
- Count out 18 linking cubes. Use the cubes to build two towers that are the same height. How many cubes are in each tower?
9 cubes in each tower.
- Count out 14 linking cubes. Use the cubes to build two towers that are the same height. How many cubes are in each tower?
7 cubes in each tower.
- Count out 8 linking cubes. Can you build two towers that are the same height? Why or why not? Tell your partner.
No.
- Give some examples of numbers like 10 and 14 that you could use to build two towers that are the same height.
2, 4, 6, 8, 10, 12, 14, 16, 20
- Give some examples of numbers like 9 that you could NOT use to build two towers that are the same height.
1, 3, 5, 9, 11, 13, 15, 17, 19

39

Page 40 Answers

LESSON 8 EVEN AND ODD PRACTICE

Even and Odd Practice

The numbers that you used to build 2 towers of the same height are all even numbers. Look at the number 12, for instance. Twelve is an even number. It can be split into 2 equal groups of 6.

If you started with an odd number of linking cubes – like 9, 11, or 9 – you couldn't build 2 towers that were the same height. One tower would always be one cube higher.

Practice

Each of the numbers below is even. Write a number sentence showing how the number can be split into two equal groups. If you need help, use your linking cubes and build two towers like you did in the opening activity.

4	$2 + 2 = 4$	14	$7 + 7 = 14$
6	$3 + 3 = 6$	18	$9 + 9 = 18$
10	$5 + 5 = 10$	20	$10 + 10 = 20$

48

Page 41 Answers

LESSON 8 EVEN AND ODD PRACTICE

Odd numbers cannot be split into two equal groups. There will always be one leftover. Look at these number sentences where the solutions are odd numbers.

$$7 \longrightarrow 3 + 3 + 1 = 7$$

$$11 \longrightarrow 5 + 5 + 1 = 11$$

Practice

Write number sentences for each of these odd numbers. If you need help, use your linking cubes and build two towers like you did in the opening activity. You will have one cube leftover.

5	$2 + 2 + 1 = 5$
9	$4 + 4 + 1 = 9$
13	$6 + 6 + 1 = 13$
17	$8 + 8 + 1 = 17$

49

LESSON 9

Spend some time reviewing the chart on p. 42. It pulls together all the different ideas behind evens and odds that we have covered.

Page 42 Answers

LESSON 9 MORE EVEN AND ODD PRACTICE

FINAL DIGITS

You Will Need:
 Colored pencils

You Will Do:

1. Look at the hundreds chart below. Color all the numbers that have a 4 as their final digit red.
2. Color all the numbers that have a 6 as their final digit green.
3. Color all the numbers that have a 8 as their final digit purple.
4. Color all the digits that have a zero as their final digit yellow.
5. Color all the digits that have a one as their final digit orange.
6. Look at all the squares that are colored in. Do you notice a pattern?

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

48

Page 44 Answers

LESSON 9 MORE EVEN AND ODD PRACTICE

Practice

Use what you know about the last digits of even and odd numbers to decide if each number below is even or odd. If you get stuck you can also look back at the hundreds chart you colored.

21 even	odd	27 even	odd
42 even	odd	31 even	odd
45 even	odd	50 even	odd
80 even	odd	75 even	odd
99 even	odd	72 even	odd

Give 3 examples of two-digit odd numbers.

Answers will vary.

44

Page 45 Answers

LESSON 9 MORE EVEN AND ODD PRACTICE

Practice

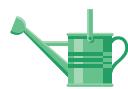
Look at the ten frames. Circle whether they show an even or an odd number.

even	odd	even	odd
even	odd	even	odd

Give 3 examples of two-digit even numbers.

Answers will vary.

45


Page 46 Answers

LESSON 9 MORE EVEN AND ODD PRACTICE

Practice

Color the even numbers in the picture. ● purple and the odd numbers ● blue to see what Anna's favorite snack is.

46

CHAPTER 2: NUMBERS TO 1000

LESSON 10

For the opening activity, students can also practice counting to 100 along to music. Some fun links are on the Book Extras website to help with this.

Take it Further: For an added challenge try counting backwards from 100.

The hundreds chart puzzles help kids to think logically and to make sense out of the patterns in the hundreds chart. We continually review these patterns because they help students make connections between one or 10 more and place value.

Page 48 Answers

LESSON 10 FINDING PATTERNS AS YOU COUNT TO 100

COUNT TO 100 CHALLENGE

You Will Need:

- Pillow
- Friend or Parent

You Will Do:

1. Take a pillow back and forth with a friend or parent. Starting with one, each person says the next number when they catch the pillow. Can you get to 100 without dropping the pillow?
2. Count to 100 as you and your friend race to see who can jump jacks or clap your hands 100 times.
3. Can you and your friend or parent stand on one leg for 100 seconds? Try it while you count!

Practice

Complete each pattern by counting backwards by ones. Look at the hundreds chart above if you need help.

22, 21, 20, 19, 18, 17, 16, 15

88, 87, 86, 85, 84, 83, 82

45, 44, 43, 42, 41, 40, 39, 38

48

Page 49 Answers

LESSON 10 FINDING PATTERNS AS YOU COUNT TO 100

Using the hundreds chart, fill in the empty boxes on the puzzles below. The puzzles are pieces cut out from the hundreds chart so the numbers follow the same patterns as the chart. Use the hundreds chart to check your answers.

1.

12	13	14
22	23	24
32	33	34

2.

16				
25	26	27	28	29
35	36	37		

3.

22	23	24
32	33	34
42	43	
52	53	
62	63	

4.

76	77	78	79	80
86	87	88	89	90
96	97	98	99	100

5.

6		
16		
26	27	
36	37	38
46	48	49

6.

25	26
35	36
45	46
55	56
65	66
75	76

49

LESSON 11

The opening activity in this lesson is much longer than in most lessons. That is because the bulk of the learning about skip counting happens in the activity. Feel free to take your time and to repeat steps if needed. If you are using something like beans that can roll away, it can be helpful to use an egg carton or small cups to contain the groups. Linking cubes also work really well because you can snap them into groups of 2, 5, or 10.

Page 51 Answers

SKIP COUNTING BY 2'S, 5'S, AND 10'S LESSON 11

Skip Counting by 2's, 5's, and 10's

Every year Mrs. Gomes organizes the Easter egg hunt for her church. This year she orders 1000 plastic eggs. She asks her friendly School class to help her get the eggs ready. She asks the kids to make groups of 10 eggs. The 10 eggs go in a giant Ziploc bag.

Chloe starts counting 10 eggs. She counts by ones like this:
1, 2, 3, 4, ...
But this is taking a long time and she keeps losing track.

Her sister Sophia tells her it will be easier if she counts by 2s.

Fill in the blanks to show how Sophia counts by 2's up to 50.

2, 4, 6, 8, 10, 12, 14, 16,
18, 20, 22, 24, 26, 28, 30, 32,
34, 36, 38, 40, 42, 44, 46, 48, 50

Page 52 Answers

LESSON 11 SKIP COUNTING BY 2'S, 5'S, AND 10'S

Then Friend Kyle is counting to 50 a different way.

He makes groups of 5 eggs and then counts up by 5s.

Fill in the blanks to show how Kyle counts by 5's up to 50.

5, 10, 15, 20, 25, 30, 35, 40, 45, 50

Julien tells all of them there is an even faster way.

He makes groups of 10 eggs and then counts up by 10s.

Fill in the blanks to show how Julien counts by 10's up to 50.

10, 20, 30, 40, 50

If you were going to count up 50 eggs, which way would you do it?

I'd count up by _____.

Why did the kids decide to skip count instead of counting by ones? Tell your parents.

82

Page 53 Answers

LESSON 11 SKIP COUNTING BY 2'S, 5'S, AND 10'S

Practice

Skip count to complete each pattern.

Count by 2's to complete each pattern.

4, 6, 8, 10, 12, 14

22, 24, 26, 28, 30, 32

Count by 5's to complete each pattern.

35, 40, 45, 50, 55, 60

15, 20, 25, 30, 35

Count by 10's to complete each pattern.

20, 30, 40, 50, 60, 70

50, 60, 70, 80, 90, 100

LESSON 12

The number line practice in this lesson helps students gain more familiarity with them. The main concept they need to grasp is that the number line increases by the same amount each time.

Page 54 Answers

LESSON 12 COUNTING WITHIN 1000

THE 700s CHART

You Will Do!

Count by ones in the chart. What patterns do you notice? Tell your parent.

700	701	702	703	704	705	706	707	708	709
710	711	712	713	714	715	716	717	718	719
720	721	722	723	724	725	726	727	728	729
730	731	732	733	734	735	736	737	738	739
740	741	742	743	744	745	746	747	748	749
750	751	752	753	754	755	756	757	758	759
760	761	762	763	764	765	766	767	768	769
770	771	772	773	774	775	776	777	778	779
780	781	782	783	784	785	786	787	788	789
790	791	792	793	794	795	796	797	798	799

Many of the patterns you found on the hundreds chart are also on the chart above.

54

Page 55 Answers

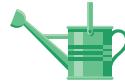
LESSON 12 COUNTING WITHIN 1000

Practice

Complete the number lines below as instructed.

1. Complete the number line by counting up by ones.

2. Complete the number line by counting up by 5's.


3. Complete the number line by counting up by 10's.

4. Complete the number line by counting up by 100's.

5. Complete the number line by counting up by 1000's.

6. Complete the number line by counting up by 10000's.

55

LESSON 13

The beauty of base ten blocks is that they help kids visualize how ten tens make one hundred or how ten hundreds makes one thousand. This image makes an abstract concept much more concrete.

Take it Further: If you have Monopoly money or play money, use the \$10 bills to practice counting by tens to different amounts.

Once students have firmly grasped counting by tens on their own, you may want to show students a shortcut in counting the tens. If they remove the last zero from the total, they will find the number of tens. They could also use this to check their answer.

$$160 = 16 \text{ tens}$$

Page 56 Answers

LESSON 13 TENS AND HUNDREDS

HOW MUCH IS 1000?

You Will Need:

Base ten blocks (full set)

You will do:

- Line up several unit cubes next to a rod. How many cubes are equal to one rod? _____
- Stack several rods next to a flat. How many rods are equal in size to one flat? _____
- Stack several flats on top of each other next to the 1000 blocks. How many flats are equal in size to the 1000 blocks? _____

Tens and Hundreds

In the activity, you explored the relationships between your base ten blocks. Use what you learned to answer these questions.

- How many tens are in 100? _____ tens
- How many hundreds are in 1000? _____ hundreds

56

Page 57 Answers

LESSON 13 TENS AND HUNDREDS

Practice

For each of the problems, make ten groups of 10 to make 100. Then find the total.

Group ten \$10 bills together to make \$100. Then count up the extra tens and find the total.

120 total

Each box contains ten markers. Group ten boxes together to make 100. Then count up the extra tens and find the total.

110 total

57

Page 58 Answers

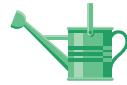
LESSON 13 TENS AND HUNDREDS

Practice

Draw a picture or act out each problem with ten rods. Then write down the solution.

Eve has \$160 in ten dollar bills. How many ten dollar bills does she have?

16


Mrs. Mungen has 130 markers for her co-op class. If each box of markers has ten markers in it, how many boxes of markers does she have?

13

Kevin has 6 ten rods from his base ten blocks set. How many more rods does he need to make 100?

4

58

LESSON 14

For the opening activity, you want to start out with 110, 120, 130, 140, 150, 160, 170, 180, or 190 beans. You can have your child help you make the groups of 10 so that it doesn't take as long. You can even place each group of 10 beans in a small cup or bowl to keep them organized. Then you can easily remove or add groups of 10 so that your child can practice counting up to another amount.

Some students will need more help than others keeping the different place values straight. If they struggle when it isn't written above each digit, try having them draw a small picture of a flat above the hundreds place, a rod above the tens place, and a unit cube above the ones. That can help them build each number with base ten blocks.

Page 61 Answers

LESSON 14 3-DIGIT NUMBERS WITH BASE TEN BLOCKS

Practice

Look at each group of base ten blocks below. Record the amount of hundreds, tens, and ones in the table.

Hundreds	Tens	Ones
1	7	6
3	8	8
3	0	9

59

Page 62 Answers

LESSON 14 3-DIGIT NUMBERS WITH BASE TEN BLOCKS

Base ten blocks for the number 485 are shown. It consists of 4 flats (100s), 8 rods (10s), and 5 unit cubes (1s). Below the blocks is a table with columns for Hundreds, Tens, and Ones, and the values 4, 8, and 5 respectively.

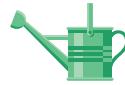
Base ten blocks for the number 658 are shown. It consists of 6 flats (100s), 5 rods (10s), and 8 unit cubes (1s). Below the blocks is a table with columns for Hundreds, Tens, and Ones, and the values 6, 5, and 8 respectively.

62

Page 63 Answers

LESSON 14 3-DIGIT NUMBERS WITH BASE TEN BLOCKS

Practice
Look at the 3-digit numbers below. Build them with your base ten blocks. Show your parent.


2 2 2	5 6 9	7 1 3
1 4 0	9 1 2	5 5 1
704	630	816

1. Dorin is using base ten blocks to model the number 284. How many rods does he need to use?
6 rods

2. Sarah uses base ten blocks to model a number. She uses 6 flats and some rods and unit cubes. Write an example of one possible number she might be modeling.

Answers will

63

LESSON 15

Play is important in mathematics. If kids are having a lot of fun trying out different towers, let them. Just be sure to have them write down the totals. They only need to record their best tower in the book. The number of blocks is limited so that students won't have to regroup when they find the total

Most students will use 7 flats, 4 rods, and 2 cubes in the 742 challenge. However, it is completely legal to use another combination (7 flats, 3 rods, and 12 cubes for instance). If you have a second set of base ten blocks, students might choose to change out a flat for 10 more rods. Also, measurement hasn't been taught yet in this book, but I couldn't resist. It fits so naturally here and allows kids to compare the heights of their towers more easily with others. It is fine if you measure the tower for them. They are still being exposed to the concept by watching you.

Sketches of the base ten blocks can be very simple: a square for a flat, a line for a rod, and a dot for the unit cube. It is just to provide a record of their work that they can refer to later.

Page 65 Answers

LESSON 15 MODEL 3-DIGIT NUMBERS EXPLORATION

Practice

In this lesson you will be using your base ten blocks to model and explore three-digit numbers.

Use a 3, 6 and 7 to write a 3-digit number. Model your number with your base ten blocks. Draw a quick picture.

Answers will

Use the same three digits from above to write a different number. Model your number with your base ten blocks. Draw a quick picture. Which number do you think is larger? Tell your parent.

Answers will

Use a 6, 1 and 2 to write a 3-digit number. Model your number with your base ten blocks. Draw a quick picture.

Answers will

88

Page 66 Answers

LESSON 15 MODEL 3-DIGIT NUMBERS EXPLORATION

Use the same three digits as before to write a different number. Model your number with your base ten blocks. Draw a quick picture. Which number do you think is larger? Tell your parent.

Answers will

What is the same about these two numbers? What is different? Tell your parent.

245 542

What is the same about these two numbers? What is different? Tell your parent.

823 832

88

They both have 4 tens. But their hundreds and ones digits are different.

They both have 8 hundreds. But their tens and ones digits are different.

LESSON 16

Expanded form is so important, especially now that we are learning about three-digit numbers. It forces students to really understand what each digit in the number represents. It also lays the groundwork for adding three-digit numbers.

Page 67 Answers

3-DIGIT NUMBERS IN EXPANDED FORM LESSON 16

GUESS THE NUMBER

Clue #1: The digit in the hundreds place is a 5.

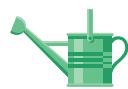
Clue #2: The digit in each place after is one more than the digit before.

Hundreds	Tens	Ones
5	6	7

Page 68 Answers

LESSON 16 3-DIGIT NUMBERS IN EXPANDED FORM

Practice


Match each number in standard form to its expanded form.

355	200 + 10 + 0
689	400 + 80 + 1
481	300 + 50 + 5
122	700 + 0 + 3
703	100 + 20 + 2
210	600 + 80 + 9

Write each number in expanded form.

432	197
400 + 30 + 2	100 + 90 + 7
908	519
900 + 0 + 8	500 + 10 + 9

88

LESSON 17

Sketches of the base ten blocks can be very simple: a square for a flat, a line for a rod, and a dot for the unit cube. It is included so students can continue to see the relationships between the different forms. Learning to represent the same concept (or number) in different ways strengthens their understanding.

Page 69 Answers

PLACE VALUE TO 1,000 LESSON 17

GUESS THE NUMBER

Clue #1: The number has 3 tens.
Clue #2: The number has the same number of hundreds and ones.
Clue #3: The three digits add up to 7.

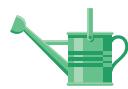
Hundreds	Tens	Ones
2	3	2

Circle the value of the red digit.

352 500 50 5	670 600 60 6	915 100 10 1
236 600 60 6	425 400 40 4	301 100 10 1

69

Page 70 Answers


PLACE VALUE TO 1,000 LESSON 17

Practice

Complete the table with the missing information. You can use squares, lines, and dots to quickly show the base ten blocks.

Number	Expanded Form	Base ten blocks
832	$800 + 30 + 2$	
168	$100 + 60 + 8$	
524	$500 + 20 + 4$	
197	$100 + 90 + 7$	
206	$200 + 0 + 6$	

70

LESSON 18

Number words are tricky to spell. Feel free to let your child flip back to the chart to check the spelling of certain words. The chart is also a printable of this chart available on the Book Extras website.

Number Words to Spell

one	nine	seventeen	seventy
two	ten	eighteen	eighty
three	eleven	nineteen	ninety
four	twelve	twenty	hundred
five	thirteen	thirty	thousand
six	fourteen	forty	
seven	fifteen	fifty	
eight	sixteen	sixty	

Page 72 Answers

LESSON 18 WORD NAMES UP TO 1000

You've learned the standard form and expanded form of 3-digit numbers. In this lesson, we will practice writing and saying the word names for three-digit numbers.

Common Number Word Names		
Standard Form	Expanded Form	Word Name
236	$200 + 30 + 6$	Two hundred thirty-six

There are just three different forms of the same number. Standard form is the most commonly used form. Expanded form helps us understand how many hundreds, tens, and ones are in the number. The word name allows us to use words instead of numbers to represent the amounts.

Practice

Write the word name for each number below. Remember that word numbers under 100 are hyphenated. For instance, 24 is written as twenty-four.

824	Eight hundred twenty-four
957	Nine hundred fifty-seven
162	One hundred sixty-two
505	Five hundred five

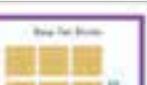
72

Page 73 Answers

WORD NAMES UP TO 1000 LESSON 18

Write the number for each word name below.

Eight hundred forty	840
Three hundred eighty-four	384
Six hundred one	601
Four hundred seventeen	417


Lesson 18 Matching Game

Carefully tear out the Lesson 18 Activity Sheet from the back of the answer key. Cut apart the different pieces and practice matching them.

73

LESSON 18: MATCHING GAME ANSWERS

Standard Form 629	Expanded Form $600 + 20 + 9$	Word Name six hundred twenty-nine	Base Ten Blocks
Standard Form 178	Expanded Form $100 + 70 + 8$	Word Name one hundred seventy-eight	Base Ten Blocks
Standard Form 629	Expanded Form $600 + 20 + 9$	Word Name six hundred twenty-nine	Base Ten Blocks
Standard Form 178	Expanded Form $100 + 70 + 8$	Word Name one hundred seventy-eight	Base Ten Blocks
Standard Form 840	Expanded Form $800 + 40 + 0$	Word Name eight hundred forty	Base Ten Blocks
Standard Form 218	Expanded Form $200 + 10 + 8$	Word Name two hundred eighteen	Base Ten Blocks

LESSON 19

This whole lesson is the game where students roll 3 dice and represent their three-digit number in 3 different ways. It provides some fun and a break from the regular problems. But it also is building a deep understanding of three-digit numbers into your student. Every time they represent a number in a different way it adds a layer of meaning to their understanding.

The answers will vary with each roll so it is important that you sit with your child as they play this game. This is the only assignment for the day, so take some time and have fun.

LESSON 20

There is no opening activity for this lesson.

Counting to 1000 is daunting! But we do want kids to get a sense of how the numbers progress. The chart that increases by tens is a way to do that without overwhelming them.

Take it Further: If you do have an eager student who wants to try counting all the way to 1000, let them try. If they make it you can tell them the author of this book said “very impressive!” If you want, send a photo of your child, his or her first name, and our consent for Apologia to post your child’s photo on its sites to customerservice@apologia.com and we’ll post it on our Facebook page under “Look Who Can Count to 1000!”

Page 76 Answers

LESSON 28 COUNTING TO 1,000 BY TENS AND HUNDREDS

Counting to 1,000 by 10s and 100s

Study the 1000s chart below. The numbers increase by tens instead of ones. Practice counting up by 10s from 10 to 1000. What patterns do you notice? Tell your parent.

10	20	30	40	50	60	70	80	90	100
110	120	130	140	150	160	170	180	190	200
210	220	230	240	250	260	270	280	290	300
310	320	330	340	350	360	370	380	390	400
410	420	430	440	450	460	470	480	490	500
510	520	530	540	550	560	570	580	590	600
610	620	630	640	650	660	670	680	690	700
710	720	730	740	750	760	770	780	790	800
810	820	830	840	850	860	870	880	890	900
910	920	930	940	950	960	970	980	990	1,000

- Place your finger on the number 60. Move down one space. What number are you on now? **160**
- Place your finger on 270. Move down one space. What number are you on now? **370**
- When you move down one square, how much does the number increase by? **100**

Page 77 Answers

LESSON 19 COUNTING TO 1000 BY TENS AND HUNDREDS

Practice

Practice counting on by tens or hundreds by completing each pattern below.

Using the chart as a guide, count on by tens.

60, 70, 80, 90, 100, 110, 120
 230, 240, 250, 260, 270, 280, 290
 670, 680, 690, 700, 710, 720, 730
 550, 560, 570, 580, 590, 600, 610

Using the chart as a guide, count on by hundreds.

160, 260, 360, 460, 560, 660
 320, 420, 520, 620, 720, 820
 450, 550, 650, 750, 850, 950
 280, 380, 480, 580, 680, 780

77

Page 78 Answers

LESSON 19 COUNTING TO 1000 BY TENS AND HUNDREDS

For each of the numbers below write in the number that is: 10 more, 10 less, 100 more, and 100 less.

358, 448, 558, 468, 681, 771, 781, 791, 881, 555, 645, 755, 665, 399, 364, 374, 384, 474, 227, 327, 427, 337

78

LESSON 21

Students won't have enough base ten blocks to build some of the larger numbers. In that case, they can sketch a picture of the blocks they would use. This still helps them to visualize the place value of the digits.

If they are struggling with writing the correct sign, have them circle the bigger number first. Then you can tell if they are getting the problem wrong because they aren't correctly comparing the numbers or if they are just getting confused about the direction of the inequality sign.

Page 79 Answers

LESSON 21 COMPARE NUMBERS UP TO 1000

BUILD AND COMPARE

You Will Need:
 Base ten blocks

You Will Do:
 1. You are going to decide which of the 3-digit numbers below is greater.
 2. Start by building each number with base ten blocks.
 3. Compare the tens sets of blocks. Which one represents more cubes?
 4. Circle the greater number.

345 361

Compare Numbers Up to 1000

In lesson 1, we learned that when we are comparing two-digit numbers we compare the ones digit first. When comparing 3-digit numbers we compare the hundreds digit first. The number with the larger digit in the hundreds place is the larger number.

702 > 389

Compare the digits in the hundreds place.
 702 is greater than 389.

79

Page 80 Answers

LESSON 21 COMPARE NUMBERS UP TO 1000

If the hundreds digits are the same, then compare the tens digits.

$532 < 541$
Compare the digits in the tens place.
532 is less than 541.

We only compare the ones if the hundreds and the tens digits are the same.

$640 < 647$
Compare the digits in the ones place.
640 is less than 647.

Practice

Compare each of the numbers. Write in the $>$ or $<$ symbol. If you aren't sure, build the number with your blocks or draw a sketch.

378 $<$ 401 561 $<$ 761

Page 81 Answers

LESSON 21 COMPARE NUMBERS UP TO 1000

563 $<$ 762	118 $<$ 502
273 $>$ 272	934 $<$ 943
120 $<$ 130	339 $<$ 439
900 $>$ 800	645 $>$ 641

Compare each of the numbers in expanded form below. Write in the $>$ or $<$ symbol.

$300 + 50 + 2 > 300 + 40 + 6$
 $800 + 30 + 5 < 900 + 00 + 1$

Owen has completed 153 days of school. Fiona has completed 147 days of school. Who has completed more school days?

Owen

LESSON 22

The Yahtzee game takes the place of the unit project because I found it was the best way for them to apply all the different things they learned in the first two chapters.

If you have a small box lid (like the top part of a board game box), you can roll the dice inside. Since you will be rolling the dice so many times, it really helps to contain the dice and avoid the frustration of dice going all over the place.

Unit two will take your child from reviewing facts all the way to subtracting with regrouping. Base ten blocks are the main manipulative in this unit because they are the easiest way to show the regrouping in a tangible way. But you will see other methods introduced too that enrich the ideas. One of my favorites is expanded form because it clearly shows the kids what each digit represents. After this unit, they work on money and time in unit three. That was intentional; I wanted them to have a break from all the addition and subtraction so they come back to it fresh in unit four to learn about three-digit numbers.

COMPLETE SUPPLY LIST

- ★ Base ten blocks
- ★ Linking cubes
- ★ 3D shape solids
- ★ Pattern blocks
- ★ Addition flashcards (up to 20)
- ★ Subtraction flashcards (up to 20)
- ★ LEGO® bricks
- ★ Dominoes
- ★ Dice
- ★ A timer
- ★ Colored pencils
- ★ Tape or glue
- ★ Scissors
- ★ Small objects (such as pennies, beans, etc.)
- ★ Ruler with inches and centimeters
- ★ A paper clip
- ★ Masking tape
- ★ Numbered cards such as Uno® cards
- ★ Notecards
- ★ Oreo® cookies
- ★ M&M's®
- ★ Two Styrofoam® cups
- ★ Five slips of paper or Post-it Notes®
- ★ One manila folder
- ★ Two large sheets of chart paper or poster board
- ★ Markers
- ★ Coins
- ★ Two brown paper bags
- ★ A dollar bill (real or fake)
- ★ Three paper plates
- ★ A brass fastener
- ★ Flyers and magazines
- ★ A stapler
- ★ Inch squares
- ★ Playdough®
- ★ Construction paper
- ★ Googly eyes, feathers, glitter, etc. (optional)
- ★ A tape measure
- ★ Yarn or twine
- ★ A plate
- ★ Dot stickers
- ★ A balloon
- ★ An empty plastic bottle
- ★ 1 cup white vinegar
- ★ 3 tsp. baking soda
- ★ A funnel
- ★ Bean seeds
- ★ Potting mix
- ★ Four small pots or cups
- ★ A tray
- ★ Pretzels and small marshmallows
- ★ Pizza dough
- ★ Cornmeal
- ★ Pizza sauce
- ★ Shredded mozzarella cheese
- ★ Assorted pizza toppings
- ★ A rolling pin
- ★ Baking sheets